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Given the extensive development of a variety of sufficient dimension reduction (SDR) 
methodologies, Ye and Weiss (2003) proposed a hybrid SDR method combining two 
pre-existing SDR methods. In particular, they used a bootstrap approach to select a 
proper weight. Since bootstrapping is computationally intensive and time-consuming, the 
hybrid reduction approach has not been widely used, although it is more accurate than 
conventional single SDR methods. To overcome these deficits, we propose a novel cross-
distance selection algorithm. Similar to the bootstrapping method, the proposed selection 
algorithm is data-driven and has a strong rationale for its performance. The numerical 
studies demonstrate that the chosen hybrid method from our proposed algorithm offers a 
good estimation quality and reduces the computing time dramatically at the same time. 
Furthermore, our real data analysis confirms that the proposed selection algorithm has 
potential advantages with its practical usefulness over the existing bootstrapping method.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Sufficient dimension reduction (SDR) for regression is a statistical methodology designed to reduce the dimension of 
predictors X ∈ Rp without losing information on Y |X, where Y ∈ R. Its main purpose is to replace the p-dimensional 
original predictors X with a lower-dimensional linearly transformed predictors ηTX without loss of information on Y |X, 
which is equivalently stated as follows:

Y X|ηTX, (1)

where stands for independence, η ∈Rp×d , and d ≤ p.
A subspace spanned by the columns of η that satisfies (1) is called a dimension reduction subspace. If the support of X

is convex, the intersection of all dimension reduction subspaces is again a dimension reduction subspace, called a central 
subspace and denoted SY |X . See Yin et al. (2008) for more details. If SY |X exists, it is unique and the smallest among all 
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Table 1
Kernel matrices of the five sufficient dimension reduction methods.

Methods Kernel matrices

Sliced Inverse Regression
MSIR = cov{E(Z|Y )}

(SIR; Li, 1991)
Sliced Average Variance Estimation

MSAVE = E{Ip − cov(Z|Y )}2
(SAVE; Cook and Weisberg, 1991)
Directional Regression

MDR = E{E(ZZT|Y )}2 + 2E{E(Z|Y )E(ZT|Y )}2 + 2E{E(ZT|Y )E(Z|Y )E(Z|Y )E(ZT|Y )} − 2Ip .
(DR; Li and Wang, 2007)
Covariance method

Mcovk = KqKT
q , where W = (Y − E(Y ))/

√
var(Y ) and Kq = {cov(Z, W ), cov(Z, W 2), . . . , cov(Z, W q)}

(covk; Yin and Cook, 2002)
Principal Hessian Direction

MpHd = E{Y − E(Y )}ZZT
(pHd; Li, 1992, Cook (1998b))

possible dimension reduction subspaces. We recommend Cook (1998a) for a comprehensive discussion of SY |X . Hereafter, η
and d stand for an orthonormal basis for SY |X , and its structural dimension, respectively.

Classical SDR methods that still dominate among the many are sliced inverse regression (SIR; Li, 1991), sliced average 
variance estimation (SAVE; Cook and Weisberg, 1991), principal Hessian directions (pHd; Li, 1992; Cook, 1998b), covariance 
method (covk; Yin and Cook, 2002), and directional regression (DR; Li and Wang, 2007). These methods are formulated as 
a generalized eigen-decomposition problem of the kernel matrix. Recently Ye and Weiss (2003) has defined a new class 
of dimension reduction methods that combine two existing SDR methods. For example, let MSIR and MSAVE be the kernel 
matrices constructed by SIR and SAVE, respectively, where a kernel matrix is one whose columns span SY |X . Then, the 
columns of a weighted sum of form αMSIR + (1 − α)MSAVE also span SY |X for 0 ≤ α ≤ 1, and hence this mixture constructs 
a class of SDR methodologies. The combination of two SDR methods is called hybrid sufficient dimension reduction. To select 
an optimal value of α, the average distances between the original-sample and bootstrap-sample estimates of SY |X are 
computed for a set of α, and we choose α to have the minimum average distance. This bootstrap approach will be discussed 
in more detail in Section 2.

It turns out that a hybrid of different SDR methods often provides a better and more reliable dimension reduction, but 
this is often overlooked in practice due to the computational intensity of choosing the two SDR methods and computing α.

The main purpose of the paper is to introduce a practical approach for selecting a proper hybrid SDR method and 
achieving computational efficiency compared to the bootstrap method (Ye and Weiss, 2003). In this paper, we present a 
novel algorithm to select an appropriate hybrid method. The key idea of the proposed selection algorithm is to measure 
distances between the two different hybrid methods for the candidate weights, and to choose the weights to achieve the 
smallest discrepancy. Furthermore, to choose one among hybrid methods, we adopt a basis-adaptive algorithm from Yoo 
(2018). This proposed a method to choose the best SDR method among four SDR methods, namely SIR, SAVE, PHD, and 
covk, in a linear regression problem. The basic idea is that if the estimated SDR subspaces from the two methods have 
a high correlation, they can be treated as a reasonable approach to recovering a central subspace, even though they may 
not be the best method. A trace correlation (Hooper, 1959) is used as a correlation measure between two subspaces. The 
trace correlation ranges from 0 to 1, a larger value signifying a higher correlation. The mathematical details of the trace 
correlation are presented in Section 2.3. Yoo (2018) first determine the pair of methods with the highest correlation among 
the four methods. Next, the combination of methods that do not contain one of the methods in the largest correlation 
pair is ruled out. They then find a couple of methods with the highest correlation among the pairs except the best one in 
the first step. Finally, the method that is included in both the best combination and the pair from the last step is chosen. 
This approach still maintains methodological comprehensiveness for the hybrid reduction while dramatically reducing the 
computing time.

The organization of the paper is as follows. In Section 2, the hybrid dimension estimation and bootstrapping are in-
troduced. Section 3 is devoted to developing a new selection algorithm. Numerical studies and a real data application are 
presented in Section 4, and we summarize our work in Section 5.

2. Hybrid sufficient dimension reduction

2.1. Candidate methodologies

The five SDR methods in the previous section are considered candidate SDR approaches for the foundational ingredients 
in the hybrid method. Here, we supplement covk and DR methods in addition to the three methods, SIR, pHd, and SAVE, 
which are used in Ye and Weiss (2003) (Table 1). For notational simplicity, let � = cov(X), Z = �−1/2(X − E(X)) and S(B)

be a subspace spanned by the columns of B ∈ Rp×q .
Estimating SY |X using the five SDR methods can be formulated as eigendecomposition of the kernel matrices because it 

can be shown that �−1/2S(M•) ⊆ SY |X , where M• denotes any one of the kernel matrices in Table 1.
For SIR, SAVE, and DR, the construction of sample versions of E(Z|Y ) and E(ZZT|Y ) is straightforward, when Y is cat-

egorical. If Y is many-valued or continuous, it is categorized by dividing its range into h slices. MDR is presented as a 
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combination of E(Z|Y ) and E(ZZT|Y ), which are fundamental parts of SIR and SAVE, respectively. Therefore, DR can be seen 
as incorporating a piece of information from SIR and SAVE.

The relation between the methods is as follows. According to Li and Wang (2007), DR can estimate SY |X exhaustively 
and spans the same subspace as SAVE under some conditions. Both SAVE and DR estimate SY |X more comprehensively than 
the other three methodologies. Proposition 4 in Yin and Cook (2002) and Corollary 1 in Ye and Weiss (2003) show that 
S(Mcovk) ⊆ S(MSIR) and S(MSIR) ⊆ S(MSAVE), respectively. So, the following relationships among Mcovk, MSIR, MSAVE, and 
MDR are directly established:

S(Mcovk) ⊆ S(MSIR) ⊆ S(MSAVE) = S(MDR). (2)

No specific relationships between MpHd and the other kernel matrices are known at present.

2.2. Candidate methodologies for hybrid dimension reduction

The basic philosophy of the hybrid of two SDR methodologies is to improve the estimation of SY |X by overcoming the 
deficits of each method. Therefore, a combination of similar methods is not desirable. The sample behaviors of SIR and covk 
are known to be similar according to Yin and Cook (2002) and Yoo (2009). The two methods of pHd and SAVE are mainly 
used when the regression is symmetric. Thus, we rule out a hybrid of SIR and covk and that of SAVE and pHd. Since DR 
shares information with both SIR and SAVE, as discussed in Section 2.1, DR will be combined with covk alone. Following 
these guidelines, we consider the following five hybrid candidates:

(1) SIR and SAVE: αMSIR + (1 − α)MSAVE;
(2) SIR and pHd: αMSIR + (1 − α)MpHd;
(3) covk and DR: αMcovk + (1 − α)MDR;
(4) covk and SAVE: αMcovk + (1 − α)MSAVE;
(5) covk and pHd: αMcovk + (1 − α)MpHd

A hybrid candidate is equivalent to either SIR or covk when α is equal to 1, while it becomes either of SAVE, pHd, or DR 
with α = 0.

2.3. Bootstrap method

In general, minimum variance is preferred when developing an unbiased estimator. Ye and Weiss (2003) proposed the 
mean of the distance between a subspace of a sample kernel matrix and a bootstrap sample kernel matrix to measure the 
variability of an estimator and determine the best combination from a class of SDR methods. Ye and Weiss (2003) combined 
two candidate matrices from MSIR, MSAVE, My−pHd, My2−pHd and selected an optimal α based on the grid search method 
to improve estimation accuracy. Therefore, in the bootstrap approach, it is essential to measure a distance between two 
subspaces. Ye and Weiss (2003) adopted the vector correlation coefficient q (Hotelling, 1936) and the trace correlation u
(Hooper, 1959). Define two k-dimensional subspaces of S(A ∈ Rp×k) and S(B ∈ Rp×k) such that ATA = Ik and BTB = Ik . 
Then, let ρ2

i , i = 1, . . . , k, be the ordered eigenvalues of BTAATB. Then, the vector correlation q and the trace correlation r
are defined as follows:

q2(A,B) =
k∏

i=1

ρ2
i and u2(A,B) = 1

k

k∑
i=1

ρ2
i .

The values of q2(A, B) and u2(A, B) vary from 0 to 1, and q2(A, B) and u2(A, B) are equal to 1, if the two subspaces of S(A)

and S(B) are equivalent. To transform a concept of correlation (higher means closer) to one of distances (smaller means 
closer), we consider the following:

qD(A,B) = 1 −
√

q2(A,B) and uD(A,B) = 1 −
√

u2(A,B).

Hereafter, we use uD as the distance measure between two subspaces, and it will be called trace correlation distance.
Next, we select candidate SDR methods and construct their corresponding sample kernel matrices M̂• . From the origi-

nal sample (Yi, Xi), i = 1, . . . , n, generate N bootstrap samples (Y b
i , Xb

i ), b = 1, . . . , N , and obtain bootstrap sample kernel 
matrices M̂b• . For each method, compute qb

D(M̂•, M̂b•) and uD
b(M̂•, M̂b•) for b = 1, . . . , N . Ye and Weiss (2003) discussed 

that a best method among the candidates should have smaller distances between S(M̂•) and S(M̂b•) than the others. 
Accordingly, for each method, we compute the average distances of q̄D and ūD using q̄D = 1

N

∑N
b=1 qb

D(M̂•, M̂b•) and 
ūD = 1 ∑N

b=1 uD
b(M̂•, M̂b•). The remaining step is then to select the method to give the smallest q̄D and ūD .
N
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Table 2
Values of α achieving the minimum average of uD and the corresponding average from the six simulated model: 
ūD is the average of uD .

Method
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

α ūD α ūD α ūD α ūD α ūD α ūD

SIR-SAVE 0.9 0.027 0.4 0.071 0.6 0.106 0.8 0.151 0.8 0.225 0.8 0.191
SIR-pHd 1.0 0.028 0.3 0.079 0.8 0.107 1.0 0.164 0.9 0.260 1.0 0.202
covk-DR 0.9 0.028 0.1 0.064 0.4 0.105 0.8 0.104 0.9 0.227 0.9 0.117
covk-SAVE 0.8 0.031 0.1 0.069 0.7 0.143 0.8 0.113 0.9 0.230 0.8 0.117
covk-pHd 1.0 0.031 0.0 0.080 0.9 0.158 1.0 0.118 1.0 0.238 1.0 0.123

3. Cross-distance approach for hybrid dimension reduction

3.1. Narrowing selection of hybrid methods

The theoretical relationships in (2) indicate that SAVE and DR are mostly preferred because of their comprehensive 
estimation of SY |X , but it is not guaranteed that these two methods yield better estimation results in the finite sample 
case than the others, which have their own methodological strengths and weaknesses. Therefore, narrowing the field of five 
hybrid candidates based on these theoretical relations is not desirable. Instead, we study the sample behaviors of the five 
hybrid candidates for the following six numerical models:

Model 1: Y |X = X1 + 0.5ε;
Model 2: Y |X = X2

1 + 0.5ε;
Model 3: Y |X = X1 + X2

2 + 0.5ε;
Model 4: Y |X = X1 + X1 X2 + 0.5ε;
Model 5: Y |X = X1 + X2

1 + X1 X2 + 0.5ε;
Model 6: Y |X = X1 + 0.5 exp(X2)ε.

For each model, 10-dimensional predictors X = (X1, . . . , X10)
T with random error ε were independently generated from 

N(0, 1). The sample sizes were 100 for all models, and each model was iterated 1000 times. The value of α varied over the 
set of (0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0).

The central subspace is spanned by (1, 0, 0, . . . , 0)T for Models 1-2 and by the two columns of ((1, 0, 0, . . . , 0), 
(0, 1, 0, . . . , 0))T for Models 3-6. In Model 1, SIR and covk are known to have a clear advantage over SAVE, DR, and pHd. On 
the other hand, for Model 2, SAVE and pHd estimate SY |X better than SIR, covk, and DR because of their intrinsic symmetric 
structure. Model 4 is a first-order interaction regression, while Models 2, 3, and 5 are second-order polynomial regressions. 
Moreover, Model 6 has a heteroscedasticity property. Models 3, 5 and 6 are considered in Ye and Weiss (2003) to bring the 
necessity of the hybrid approach for sufficient dimension reduction.

The above six simulated models do not cover all possible regression models. However, they have been widely used 
not only to teach linear regression but also to compare how well SDR methodologies estimate SY |X in the literature (Li, 
1991; Cook and Weisberg, 1991; Yin and Cook, 2002; Li and Wang, 2007; Yoo, 2009). So, the comparison of the five hybrid 
methods through the six artificial models would be quite representative for investigating the asymptotic behaviors of hybrid 
methods. As a summary measure of the numerical studies, the averages of the trace correlation distances between the 
true basis matrix of SY |X and its estimate were computed and are reported in Fig. 1 under the true structural dimension. 
According to Fig. 1, SIR-SAVE and covk-SAVE methods clearly outperform SIR-pHd and covk-pHd, respectively. Henceforth, 
the two pHd-related hybrid methods are ruled out of consideration in our approach. There is no clear winner between 
SIR-SAVE and covk-SAVE. The SIR-SAVE, covk-DR and covk-SAVE estimate SY |X fairly well with appropriate choices of α in 
most models, although covk-DR shows most stable estimation results than the other two.

The optimal value of α accomplishes the minimum average of uD and its corresponding average for the six simulated 
models is reported in Table 2. According to Table 2, the two pHd-related hybrid methods often have the extreme values of 
α such as 0.0 and 1.0. On the other hand, none of SIR-SAVE, covk-DR, and covk-SAVE have such values. This implies that 
pHd would not have good cooperation with SIR and covk, and not tend to provide additional information to them. This 
confirms the validity of the elimination of SIR-pHd and covk-pHd from consideration. The theoretical relations between the 
remaining SIR-SAVE, covk-DR, and covk-SAVE are established by the following proposition.

Proposition 1. Relations between SIR-SAVE, covk-DR, and covk-SAVE are as follows.

a. S(αMcovk + (1 − α)MDR) = S(αMcovk + (1 − α)MSAVE).
b. For α = 1, S(αMcovk + (1 − α)MDR) = S(Mcovk) ⊆ S(αMSIR + (1 − α)MSAVE) = S(MSIR).
c. For 0 ≤ α < 1, S(αMcovk + (1 − α)MDR) = S(αMSIR + (1 − α)MSAVE) = S(MSAVE) = S(MDR).

Proof. The proof can be found in the Appendix. �
Y. Park, K. Kim and J.K. Yoo Computational Statistics and Data Analysis 176 (2022) 107562
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Fig. 1. Averages of trace correlation distance uD for Models 1–6 for various values of α.
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Table 3
Cross table of αs for SIR-SAVE and covk-DR.

covk-DR

Good α (G) Bad α (B)

SIR-SAVE
Good α (G) G1 G2
Bad α (B) G3 G4

Based on these numerical studies and the theoretical relation, the five hybrid methodologies are reduced to SIR-SAVE, 
covk-DR and covk-SAVE, and this narrowing of focus does not sacrifice the benefits of the larger group of all five hybrid 
methods.

3.2. Cross-distance selection of α

For further discussion, we define M̂SS(α) = αM̂SIR +(1 −α)M̂SAVE, M̂cD(α) = αM̂covk +(1 −α)M̂DR, and M̂cS(α) = αM̂covk +
(1 − α)M̂SAVE, and that η̂ss

d (α), η̂cD
d (α), and η̂cS

d (α) are the d-dimensional estimate of η from M̂SS(α), M̂cD(α), and M̂cS(α), 
respectively, where M̂•(α) is the sample kernel matrix constructed from each hybrid method with a weight α.

Since α determines the weights of the two SDR methods in a hybrid approach, the criterion of selecting α is essential. 
Here, we apply a grid search process. The basic and reasonable philosophy to select a good α is placed on finding α which 
the hybrid method with α can estimate SY |X better than the other candidates for α in a grid. Under this philosophy, the 
following minimization is the key idea for the choices of α:

argmin
αi ,α j

rd
D(αi,α j) = ||η̂†

d(αi) − η̂‡
d(α j)||2, αi and α j = 0,0.1, . . . ,0.9,1.0,

where rd
D(αi, α j) = uD(M̂†(αi), M̂‡(α j)) with a structural dimension d and M̂†(αi), M̂‡(α j) represent the kernel matrices of 

the two hybrid methods † and ‡, respectively, || • || represents the norm, and η̂†
d(αi) and η̂‡

d(α j) stand for the d-dimensional 
estimates of η̂ from the two hybrid methods.

We explain how the minimization would work with SIR-SAVE and covk-DR. The squared distance ||η̂SS
d (αi) − η̂cD

d (α j)||2
has the following expansion for the true basis η:

||η̂SS
d (αi) − η̂cD

d (α j)||2≥||η̂SS
d (αi) − η||2 + ||η̂cD

d (α j) − η||2 − 2||η̂SS
d (αi) − η|| × ||η̂cD

d (α j) − η||. (3)

The squared distance ||η̂SS
d (αi) − η̂cD

d (α j)||2 in (3) is minimized not only by minimizing ||η̂SS
d (αi) − η||2 and ||η̂cD

d (α j) −
η||2 but also by maximizing ||η̂SS

d (αi) −η|| ×||η̂cD
d (α j) −η||. The bootstrapping approach by Ye and Weiss (2003) is to select 

α to minimize ||η̂SS
d (αi) −η||2 or ||η̂cD

d (α j) −η||2 separately. This is the critical distinguishing feature of the proposed novel 
selection approach compared to the boostrapping of Ye and Weiss (2003).

Now, we classify α into the four candidate groups for SIR-SAVE and covk-DR, which is reported in Table 3. The group 
“Good α” in Table 3 means that α in the group estimates SY |X well. For example, for Model 3, the values of 0.5, 0.6, and 
0.7 would be in “Good α” for SIR-SAVE and those of 0.0, 0.1, . . . , 0.7 should be in “Good α” for covk-DR. Then, it is must 
be desirable that the minimizers of ||η̂SS

d (αi) − η̂cD
d (α j)||2 should be chosen in G1 of Table 3, but the minimization does not 

guarantee this because of the cross-product distance ||η̂SS
d (αi) − η|| × ||η̂cD

d (α j) − η||.
For G1 and G2, G1 is expected to be chosen over G2 by investigating the difference of rd

D (G, G) − rd
D(G, B):

rd
D(G,G) − rd

D(G,B) = ||η̂SS
d (G) − η||2 + ||η̂cD

d (G) − η||2 − 2〈η̂SS
d (G) − η, η̂cD

d (G) − η〉
−||η̂SS

d (G) − η||2 − ||η̂cD
d (B) − η||2 + 2〈η̂SS

d (G) − η, η̂cD
d (B) − η〉

= ||η̂cD
d (G) − η||2 − ||η̂cD

d (B) − η||2
+2〈η̂SS

d (G) − η, η̂cD
d (B) − η − (η̂cD

d (G) − η)〉
≤ ||η̂cD

d (G) − η||2 − ||η̂cD
d (B) − η||2

+2||η̂SS
d (G) − η|| × ||η̂cD

d (B) − η − (η̂cD
d (G) − η)||

≤ ||η̂cD
d (G) − η||2 − ||η̂cD

d (B) − η||2
+2||η̂SS

d (G) − η|| × (||η̂cD
d (B) − η|| + ||(η̂cD

d (G) − η)||). (4)

In the last inequality of (4), the first part ||η̂cD
d (G) − η||2 − ||η̂cD

d (B) − η||2 should be negative, because η̂cD
d (G) esti-

mates SY |X better than η̂cD
d (B). Since both η̂cD

d (G) and η̂SS
d (G) estimate SY |X well, it would be expected that S(η̂cD

d (G)) ≈
S(η̂SS

d (G)). If so, we have ||η̂cD
d (G) − η|| ≈ ||η̂SS

d (G) − η|| ≈ 0. Therefore, rd
D(G, G) − rd

D(G, B) would be negative, the values in 
α in G1 are normally selected over those in G2. The same rationale can be applied to the comparison between G1 and G3.
6
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A rough condition for selecting α in G1 over G2 and G3 is that S(η̂†
d(G)) ≈ S(η̂‡

d(G)). This indicates that both hybrid 
methods to compute rd

D(αi, α j) need to yield homogeneous estimation results. To satisfy this, we consider two cases of 
rd

D(αi, α j) between SIR-SAVE and covk-DR and between covk-DR and covk-SAVE. It is well known that SIR and covk yield 
similar estimation results (Yoo, 2018), and DR has information about both SIR and SAVE. The cross-distance between SIR-
SAVE and covk-SAVE is ruled out, because large differences in α for SAVE can lead to the outcome that S(η̂SS

d (G)) is distant 
from S(η̂cS

d (G)). Other than this, another poor selection of α can arise in G4. The values of α in G4 can be minimizers 
due to methodological similarity caused by extreme values of α. For example, the choice of α = 1 reduces SIR-SAVE and 
covk-DR to SIR and covk, respectively, and their estimates should be similar as discussed above. So, rd

D (αi, α j) may possibly 
be minimized at αi = 1 and α j = 1 regardless of how well these methods estimate SY |X . To address this issue, we remove 
the two extreme values α = 0 and α = 1. According to Table 2, the three hybrid methods do not include either α = 0 or 
α = 1 for the best values of α. Furthermore, for covk-DR and covk-SAVE, rd

D (αi, α j) will be smaller for larger values of αi

and α j due to the same reason. We will therefore consider α = 0.1, . . . , 0.8, excluding 0.9, for covk-DR and covk-SAVE. In 
Models 1, 5, and 6, selecting α = 0.9 provides the best estimation accuracy for the covk-DR method, but the differences 
in accuracy from α = 0.8 are 0.0004, 0.0102, and 0.0031, respectively. The covk-SAVE has the best α at 0.9 in Model 5, 
and the difference with α = 0.8 is 0.028. The elimination of α = 0.9 does not affect the estimation accuracy and will not 
diminish the novelty and advantage of the hybrid dimension reduction.

Note that the distance rd
D (αi, α j) depends on αi and α j as well as the structural dimension d. Therefore, the distance 

should be computed for d = 1, 2, . . . , m, where m is user-selected. Since d is unknown in practice, it is necessary to pick the 
minimizers for each of d = 1, 2, . . . , m.

In Model 3, which Ye and Weiss (2003) brought the necessity of hybrid dimension reduction, the best values of α for 
SIR-SAVE and covk-DR are 0.6 and 0.4, respectively, according to Table 2. If we use the proposed selection approach for one 
simulated-data, SIR-SAVE and covk-DR select 0.6 and 0.5 as their proper α. For SIR-SAVE, the CDS determines the optimal 
value correctly, and, for covk-DR, the difference between α = 0.4 and α = 0.5 is 0.005, which is essentially ignorable. This 
result is attractive and persuasive.

Based on the reasoning discussed above, a two-step selection algorithm is proposed as follows. The first step is initiated 
to determine one of two pairs of (SIR-SAVE, covk-DR) and (covk-SAVE, covk-DR). The essential method in the two pairs 
is covk, and hence it is necessary to evaluate how well covk represents data. For this investigation, the so-called basis 
adaption selection algorithm (Yoo, 2018; BAS) is implemented for covk, SIR, SAVE and pHd, instead of DR. Since DR is 
related to both SIR and SAVE, its inclusion in BAS will prevent a fair evaluation of covk in the data. If covk is selected by 
BAS, then rd

D(αi, α j) between covk-SAVE and covk-DR are computed to search for good αi and α j . If not, rd
D(αi, α j) between 

SIR-SAVE and covk-DR are minimized.
The second step is to select one of the two hybrid methods determined in the first step. For (covk-SAVE, covk-DR), covk-

DR with its chosen α will be the representative hybrid method, because various numerical studies have shown that covk-DR 
estimates SY |X better than covk-SAVE. In the case of (SIR-SAVE, covk-DR), BAS is conducted for SIR, SAVE, covk and DR. If 
either SIR or SAVE is recommended, SIR-SAVE with its suggested α will be chosen, and covk-DR will be, otherwise.

Since this proposed selection approach is based on computing the cross-distances between SIR-SAVE, covk-DR, and covk-
SAVE, it will be called cross-distance selection (CDS) algorithm. The formal cross-distance selection algorithm is as follows.

Algorithm Cross-distance selection algorithm

1. Fix the maximum value dmax of d, which is less than p. Here, we set dmax to 4. Since d turns out to be 
equal to one or two in many SDR application, dmax = 4 should suffice in practice.

2. Run the BAS algorithm with SIR, SAVE, covk and pHd. If covk is suggested, rd
D (αi, α j) between covk-SAVE 

and covk-DR is minimized over the grids for αi , α j , and d. Then, covk-DR with its suggested α and d is 
fitted, and the dimension reduction is terminated. There will be no further step. Otherwise, rd

D (αi, α j)

between SIR-SAVE and covk-DR is minimized.
3. If rd

D(αi, α j) between SIR-SAVE and covk-DR is minimized in the previous step, run BAS with SIR, SAVE, 
covk and DR. If SIR and SAVE are recommended, SIR-SAVE with its suggested α and d is fitted. 
Otherwise, covk-DR with its suggested α and d is fitted.

If bootstrapping is used for the three hybrid methods with B , the total number of fittings is equal to 3 × (B × 9 × dmax). 
If using a setting with dmax = 4 and B = 500, this number turns out to be 43, 200. By contrast, the total number of fitting 
steps in CDS is equal to 

(4
2

) × dmax + 2 × 9 × dmax + (4
2

) × dmax. The first and last 
(4

2

) × dmax are for two applications of 
BAS. If dmax = 4, it is equal to 120. With the setting, the bootstrap approach requires to run, at least, 360 times more 
fitting procedures than the proposed CDS. For Model 1 given in Section 3.1 on a desktop computer with Windows 10 
64-bit operating system and Intel(R) Core(TM) m5-6Y54 CPU @1.10GHz 1.51GHz and 8GB RAM, the running times of the 
proposed CDS and the existing bootstrapping selection among SIR-SAVE, covk-SAVE, and covk-DR are 0.45 and 246.98
seconds, respectively. This confirms that the CDS has very strong advantage over the bootstrap method in computational 
efficiency.
7
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4. Numerical studies and real data analysis

4.1. Numerical studies

To demonstrate the competitiveness of the cross-distance selection algorithm, we used the simulated models in Sec-
tion 3.1 with the same settings. The proposed CDS is compared with SIR-SAVE, covk-DR, and covk-SAVE using the best α in 
Table 2. The boxplots of uD computed for each model are presented in Fig. 2 with labels on the horizontal axis are as fol-
lows. “SIRSAVE0#”, “covkDR0•”, and “covk-SAVE0†” stand for SIR-SAVE, covk-DR, and covk-SAVE with α = 0.#, α = 0.•, and 
α = 0.†, respectively, from Table 2. “CDS” represents the fit by the hybrid SDR method with α chosen by the CDS algorithm. 
Lastly, “Boot” stands for the best fit by SIR-SAVE, covk-SAVE, and covk-DR selected by the bootstrapping criterion with 500 
bootstrapping in Ye and Weiss (2003). In Fig. 2, the red lines represent the medians of uD s.

According to Fig. 2, it is observed that, for Models 1, 2, and 4, there is no significant difference between CDS, boot-
strapping selection, and the best versions of SIR-SAVE, covk-DR, and covk-SAVE from Table 2. For Models 3 and 5, CDS 
clearly dominates the bootstrapping selection, while bootstrapping is the best method for Model 6. These numerical studies 
along with computing time considerations confirm the potential advantage of the cross-distance selection algorithm over 
the bootstrapping selection.

4.2. Real data analysis: abalone data

We apply CDS to data describing abalone (Triastcyn and Faltings, 2020). The age of abalone is determined by cutting 
the shell through the cone, staining it, and counting how many rings are observed through a microscope. This task re-
quires a good deal of time. The age in years is the number of rings plus 1.5. To predict the age of abalone, their physical 
measurements, which are relatively easier to obtain, are used. For this, the following seven characteristics were measured 
and recorded: longest shell measurement (length, mm) shell measurement perpendicular to the longest shell measurement 
(diameter, mm) meat in shell (height, mm) whole abalone weight (whole weight, grams) meat weight (shucked weight, 
grams) gut weight after bleeding (viscera weight, grams), and shell weight after being dried (shell weight, grams). These 
measurements are used as the predictors. The total number of observations is 4177. The full data and a more detailed 
description can be found at

https://archive .ics .uci .edu /ml /machine -learning -databases /abalone/.

In the dataset, the 1418th and 2052th observations were suspected to be outliers based on a scatterplot matrix of predictors 
and responses, and they were removed in the analysis. Since 

√
R2 computed from a regression of the whole weight given 

the other weights was 0.995, the whole weight was eliminated from the analysis to avoid multi-collinearity, Next, to satisfy 
the conditions required in SIR, SAVE, covk, and DR, the three remaining weights were transformed to a square-root scale. 
With these settings of the data, the proposed CDS algorithm and the existing Ye and Weiss (2003) approach with 500
bootstrapping were applied to data with 10 slices for SIR and 5 slices for SAVE and DR.

To begin with, the computing time of the CDS and bootstrapping approaches are 3.84 seconds and 2865.32 seconds 
(about 47 minutes), respectively, which shows a clear computational advantage of our approach over Ye and Weiss (2003). 
The CDS algorithm suggests covk-DR with α = 0.9, and covk-DR heavily depends on covk. The Ye and Weiss (2003) approach 
recommends SIR-SAVE with α = 1, which is simply SIR. This is because the data have linear a relationship between the 
response and the predictors. To investigate the estimates of SY |X between the two, the trace correlation distances are 
computed for d = 1, 2, and 3, which are 0.259, 0.008, and 0.042, respectively. According to Yoo (2018), SIR and covk often 
yield quite close estimates of SY |X , the structural dimension would be determined to be equal to 2, because the distances 
are the shortest under d = 2. Then, supposing that d = 2, the two estimates span essentially the same space, and there is 
no difference in the dimension reduction between the CDS and Ye and Weiss (2003) approaches. However, CDS has a clear 
benefit in computational efficiency over the Ye and Weiss (2003) approach. This data analysis confirms a potential advantage 
of the proposed CDS algorithm over the bootstrapping method.

5. Discussion

Hybrid sufficient dimension reduction (SDR) is a weighted sum of kernel matrices of two different SDR methods, which
are proposed by Ye and Weiss (2003). A bootstrap approach was developed in Ye and Weiss (2003) to select not only a 
proper value of a weight required to combine two methods but also one among many candidate hybrid methods. Since 
bootstrapping is computationally intensive and time-consuming, the hybrid reduction has not been popular even though it 
is more accurate than the usual single SDR methods in the estimation of the central subspace.

Before developing a new algorithm, a handful of hybrid SDR methods were reduced to three good candidates throughout 
various representative simulated models. The survived hybrid methods are the following three combinations of SDR meth-
ods: sliced inverse regression (Li (1991)) and sliced average variance estimation (Cook and Weisberg (1991)); covariance 
method (Yin and Cook, 2002) and directional regression (Li and Wang, 2007); covariance method and sliced average vari-
ance estimation. For the three chosen hybrid methods, a CDS algorithm was proposed. The proposed selection algorithm 
8
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Fig. 2. Averages of trace correlation distance uD for Models 1–6 for SIR-SAVE, covk-DR, covk-SAVE, CDS, and bootstrapping (Boot); Red line represents 
median of uD s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

is data-driven like bootstrapping and has good reasoning about its performance. According to the numerical studies, the 
proposed algorithm often outperforms the bootstrap method (Ye and Weiss, 2003) in estimation accuracy and guarantees 
computational efficiency at the same time.

For future research, combining three or four SDR methods can be considered. This would possibly stress more method-
ological commonalities than methodological differences. Embracing the differences is why hybrid SDR methods estimate the 
central subspace better than the individual method. Therefore, the combination of three or four SDR methods may not be 
preferred to that of the two. Also, it will take much time to find proper weights, because all possible combinations of the 
weights are excessively numerous.
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Appendix A. Proof of Proposition 1

To prove Proposition 1, we prove the following Lemma 5.1.

Lemma 5.1. Suppose that A and B are semi-positive definite with S(A) ⊆ S(B). Then, for 0 ≤ α < 1, S(B) = S(αA + (1 − α)B).

Proof. For α = 0, the equivalence trivially holds. For 0 < α < 1, Lemma 4 in Ye and Weiss (2003) guarantees that S(B) =
S((1 −α)B) ⊆ S(αA + (1 −α)B). Suppose that ν �= 0 is orthogonal to S(B), that is νTB = 0. The condition that S(A) ⊆ S(B)

directly implies νTA = 0. Consequently, νT(αA + (1 − α)B) = 0 and we have S(αA + (1 − α)B) ⊆ S(B). Finally, we have 
S(B) = S(αA + (1 − α)B), and this completes the proof. �

Since S(Mcovk) ⊆ S(MSIR) ⊆ S(MSAVE) = S(MDR) in (2), Proposition 5.1 directly indicates that S(αMcovk +(1 −α)MSAVE) =
S(MSAVE) = S(MDR) = S(αMcovk + (1 − α)MDR) for 0 ≤ α < 1, and part (a) trivially holds for α = 1. This completes proof of 
part (a). Proof of part (b) is straightforward. For part (c), Proposition 5.1 directly implies that S(αMSIR + (1 − α)MSAVE) =
S(MSAVE) = S(MDR) = S(αMcovk + (1 − α)MDR). This completes the proof of part (c). �
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