
Statistics and Computing           (2025) 35:94 
https://doi.org/10.1007/s11222-025-10625-7

ORIG INAL PAPER

On sufficient dimension reduction methods based on a graphical
model with non-concave penalty

Yujin Park1 · Kyongwon Kim2 · Jae Keun Yoo1

Received: 12 September 2024 / Accepted: 22 April 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Ultra high-dimensional datasets, which refer to scenarios where the number of covariates grows at an exponential rate relative
to the sample size, are frequently encountered in modern data analysis across fields such as genomics, finance, and social
sciences. These datasets pose significant challenges due to the large number of variables relative to the number of observations,
potentially resulting in issues such as multicollinearity, overfitting, and computational difficulties. Traditional sufficient
dimension reduction (SDR)methods strugglewith these challenges,making it necessary to developnewapproaches.To address
these limitations, we introduce a graphical model-based SDRmethod that incorporates a smoothly clipped absolute deviation
(SCAD) penalty. This method effectively reduces dimensionality while managing sparsity in the dataset. Additionally, we
extend directional regression for high-dimensional data by integrating them with graphical LASSO, which enhances the
model’s ability to estimate sparse precision matrices. This combined approach not only mitigates computational infeasibility
in estimating covariancematrices but also helps avoid overfitting,making it particularly suitable for high-dimensional contexts.
Through extensive simulation studies and real-world data analyses,wevalidate the robustness and effectiveness of our proposed
methods.Moreover, we provide a theoretical framework that discusses the convergence rate of thesemethods, offering insights
into their performance under various conditions. Finally, we outline potential avenues for future research, including exploring
alternative penalty functions and expanding the applicability of these methods to other types of data structures.

Keywords sufficient dimension reduction · graphical model · precision matrix · SCAD · graphical LASSO

1 Introduction

SDR is one of the most powerful dimension reduction meth-
ods (Li 21; Cook and Weisberg 8; Li 24; Cook 7). The main
objective of SDR is to identify a subspace so that we can
project the original data into a low-dimensional subspace
without loss of information. SDR has been widely applied
in a variety of research areas, including image classification
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(Benouareth 2), graphical models (Li and Kim 25; Kim 18),
causal inference (Ma et al. 33; Cheng et al. 5), and biomedical
research (Yoo 47; Tomassi et al. 39).

Despite recent advances in SDR methods, theoretical
developments remain limited for datasets inwhich the dimen-
sion (p) exceeds the number of observations (n). This is
because of the necessity of computing inverse of the sample
covariance matrix. However, estimating the precision matrix
in an ultra high-dimensional dataset is by nomeans easy (Fan
et al. 14) as the sample covariance matrix is not invertible.

To overcome this limitation, [23] approximated sparse
SDR by merging shrinkage estimation with existing SDR
methods such as sliced inverse regression (SIR; Li 21)
and sliced average variance estimation (SAVE; Cook and
Weisberg 8). Sparse SDR converts the SDR problem as
an optimization framework. They added an L1 penalty to
achieve sparsity. They confirmed that this estimation strat-
egy converges fast enough and reaches the global minimum,
most of the time. [45] invented a sequential SDR algorithm
to address large p and small n problems. This algorithm
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partitions the data into blocks and reduces the data sequen-
tially. [29] developed a diagonal thresholding screening SIR,
which focuses on applying the method in high-dimensional
cases. [41] introduced a convex optimization approach to
fit sparse SIR in high-dimensional data. Using a group-
Dantzig selector type formulation approach, [16] induced
row-sparsity to the SIR dimension reduction vectors. [34]
developed the graph informed SIR (GraphSIR) and graph
informedSAVE (GraphSAVE). They employed the graphical
LASSO (Glasso) (Friedman et al. 12) to address the chal-
lenges associated with SIR and SAVE in high-dimensional
settings. For additional advances, see [35] and [40].

In this paper, we propose a graphical model based SDR
method using a SCAD penalty (Fan and Li 13) to overcome
the difficulties from traditional SDR methods for analyzing
high dimension, low sample size dataset. SCAD combines
variable selection and coefficient estimation simultaneously
and this allows for more accurate and efficient modeling.
The penalty functions employed are symmetric, nonconcave
and having singularities at the origin. These penalty func-
tions reduce bias in large coefficients and ensure continuous
solutions, in contrast to methods such as LASSO, which
may introduce bias. The SCAD method is widely applica-
ble across different types of models, including parametric,
nonparametric, and generalized linear models. In terms of
sparsity and model selection, the SCAD penalty promotes
sparse solutions similarly to Glasso, but it provides the addi-
tional advantage of being nonconvex. This nonconvex nature
allows our proposed method to provide even sparser solu-
tions than Glasso based methods (GraphSIR, GraphSAVE)
by shrinking smaller coefficients to zero more effectively
with a more accurate identification of non-zero entries in the
precision matrix.

Our method combines the SCAD-penalized precision
matrix estimation with SDRmethods, including SIR, SAVE,
and directional regression (DR; Li andWang 27), to estimate
the SDR subspaces. We further present the Glasso based
DR, which is an extension of GraphSIR and GraphSAVE.
The proposed method prevents users from the computational
infeasibility of estimating the covariance matrix and overfit-
ting problems.

We demonstrate that our method provides a robust esti-
mation of the SDR subspace. In a theoretical perspective,
we show that our method can consistently estimate the SDR
subspace in high-dimensional settings.Moreover, simulation
studies and real data analyses confirm that our method out-
performs in statistical accuracy in high-dimensional settings.

The paper is organized as follows. In Section 2, we intro-
duce methods of SDR and precision matrix estimation. In
Section 3, we present our method for the data with large p
small n and provide technical proof of ourmethod .We report
the simulation study results in Section 4 and give numerical
results from real datasets in Section 5. Finally, Section 6 con-

tains the conclusion remarks and the potential future studies.
Computational time and memory usage for both simulation
studies and real data analyses are provided in the Appendix.

2 Preliminaries

2.1 Sufficient dimension reduction

SDR in a regression focuses on identifying linear com-
binations νTX, which can explain all the distributional
relationship in Y ∈ R given X ∈ R

p. Here, ν stands for
a p × q matrix, with q � p and the relationship can be
expressed as

Y X|νTX,

where denotes statistical independence. This also can be
regarded as the original p-dimensional predictors X can be
replaced by reduced q-dimensional predictors νTX, without
loss of information on the conditional distribution of Y given
X. Since the matrix ν itself is not identifiable, it is essential
to focus on the space spanned by its columns. This space
is referred to as the dimension reduction subspace (DRS),
denoted by S(ν). In this framework, the matrix ν is not
uniquely defined. The intersection of all DRS is itself a DRS
and is called the central subspace (CS), which is denoted by
SY |X. The primary goal of SDR is to estimate SY |X. Let

Z = �−1/2(X − μ),

denotes the standardized version of X, where μ and � are
the mean and covariance of X, respectively. Consequently,
there exists a relationship between the CSs of Y |X and Y |Z
as

SY |X = �−1/2SY |Z.

This process significantly enhances the accuracy of CS esti-
mation and ensures stable results. Many SDR methods,
including SIR, SAVE, and DR, rely on matrix operations
such as covariance estimation, eigenvalue decomposition, or
conditional mean calculations. These operations are highly
sensitive to the scale and variability of the predictors. If the
variables in X are not standardized, the differences in their
scales can lead to numerical instability, skewing the results
and potentially introducing bias or inaccuracies in the estima-
tion process. Standardizing X secures that all variables are on
a comparable scale, allowing matrix computations to remain
stable and reliable. Intuitively, standardization prevents dom-
inant variables with large variances from disproportionately
influencing the results, which could overshadow the contri-
butions of other variables. This step is particularly crucial in
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high-dimensional settings where variable scaling differences
are amplified.

We denote the basis matrix for the CS of SY |Z as νZ.
For most SDR methods, either one or both of the following
linear conditional mean and constant conditional variance
conditions are required.

Assumption 1 (Linear conditional mean condition)
E[Z|νTZZ] is linear in νTZZ resulting in E[Z|νTZZ] = PνZZ
where PνZ is a projection onto a subspace of νZ.

This can be satisfied when Z having an elliptical distribution
(Eaton 10).

Assumption 2 (Constant conditional variance condition)
var(Z|νTZZ) is nonrandom, which is equivalent to Z having
a normal distribution (Cook 6).

A number of studies have been conducted for estimating a
CS. SIR was introduced by [21], utilizing the first condi-
tional moment E(Z|Y ). Under Assumption 1, the following
relationship can be established

S{E(Z|Y )} ⊆ SY |Z,

which implies that a CS can be recovered from E(Z|Y ).
Although SIR has significantly contributed to advance-

ments in dimension reduction, it fails to enable the recovery
of SY |Z when E(Z|Y ) = 0 for all Y , which means a regres-
sion surface is symmetric with respect to 0. To address
this limitation of SIR, [8] proposed SAVE. This indicated
cov(Z|Y ) changes from one slice to another when E(Z|Y ) =
0 for all Y and considered the second moment of E(Z|Y ) to
estimate SY |Z. Under Assumptions 1 and 2, we can derive
E[Ip − var(Z|Y )] = PνZE[Ip − var(Z|Y )]PνZ . It is possi-
ble to establish the following,

S{Ip − cov(Z|Y )}
= S[{Ip − cov(Z|Y )}2] ⊆ SY |Z.

While both SIR and SAVE use the conditional moment of
Z, DR (Li andWang 27) is based on the conditional moment
of Z− Z̃, where Z̃ is an independent copy of Z (Li andWang
27; Kim and Yoo 19). [28] introduced a contour regression
by using the idea of empirical directions {Zi −Z j : 1 ≤ i ≤
j ≤ n}. Since empirical directions can capture positional
information about Z, it is helpful to uncover the empirical
distribution. [27] improved the computational inefficiency of
empirical directions by introducingDRwhich regresses (Z−
Z̃)(Z− Z̃)T onto the space of (Y − Ỹ ). Suppose Assumptions
1 and 2 hold and let (Z̃, Ỹ ) be an independent copy of (Z,Y ).
Then, it is trivial that E

[
(Z − Z̃)(Z − Z̃)T|(Y , Ỹ )

] − 2Ip =
PνZ

[
E[(Z − Z̃)(Z − Z̃)T|(Y , Ỹ )] − 2Ip

]
PνZ . This can be

expressed as

S[
E[(Z − Z̃)(Z − Z̃)T|(Y , Ỹ )] − 2Ip

] = SY |Z.

2.2 Sparse precisionmatrix

Several methods have been proposed for estimating sparse
covariance and inverse of the covariance matrices in high-
dimensional settings. These methods include penalized like-
lihood approaches (Fan and Li 13; Friedman et al. 12; Zhang
50), column-by-column estimation methods (Meinshausen
andBühlmann30;Yuan 48; Sun andZhang38), and amethod
that focuses on symmetric precision matrix estimation (Zhao
and Liu 52). To address the estimation problem of SY |Z asso-
ciated with a large covariance matrix in an high-dimensional
dataset, we incorporate well-known penalized likelihood
algorithms such as SCAD and Glasso to the SDR problem.
These algorithms are based on the extensively studied theo-
retical properties of the underlyingpenalties, as demonstrated
by [36], and [20]. Moreover, their computational efficiency
enables them to be utilized in practical applications. The
basic idea of the penalized likelihood method for estimat-
ing precision matrix is minimizing the penalized negative
log-likelihood function, denoted by

l(�) = trace(S�) − log det� +
∑

a �=b

Pλ(|θab|),

where � is an inverse of a covariance matrix, called pre-
cision matrix, θab is the (a, b)-element of �, and λ is
the tuning parameter. Pλ(·) denotes the penalty function
that increases sparsity in the precision matrix and S =
1
n

∑n
i=1(Xi − X̄)(Xi − X̄)T. This formula assumes that X

follows an independent and identically distributed multi-
variate normal distribution with mean μ and the positive
definite covariance matrix �. This approach provides a bal-
anced solution to the problem of high dimensions, striving
for accuracy in estimation while moderating computational
demands and promoting interpretability through sparsity. For
more details, see [13].

The Glasso considers L1 regularization, expressed by
Pλ(|τ |) = λ|τ |. They proposed a method of determining
conditional independence based on the sparsity of the preci-
sion matrix. That is, the variables a and b are conditionally
independent, given the other variables if�−1

ab is equal to zero.
For more information on the Glasso, see [46], [12], and [31].

In this paper, we utilize the SCAD penalty to achieve
better accuracy in estimating a precision matrix and eventu-
ally, SDR. The thresholding penalty of SCAD can effectively
combine the thresholding and shrinkage, which is defined as

Pλ(|τ |) =

⎧
⎪⎪⎨

⎪⎪⎩

λ|τ |, if |τ | ≤ λ,

−(τ 2−2aλ|τ |+λ2)
2(a−1) , if λ < |τ | ≤ aλ,

(a+1)λ2

2 , if |τ | > aλ,

(1)
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for λ > 0 and a > 2. [20] utilized the local linear approx-
imation (LLA; Zou and Li 51) for estimating the precision
estimate with nonconcave penalized method. By a linear
function, the LLA algorithm iteratively and locally approxi-
mates the penalty function as

Pλ

(∣∣θab
∣∣)≈ Pλ

(∣∣θ(0)
ab

∣∣)

+ P ′
λ

(∣∣θ(0)
ab

∣∣)(∣∣θab
∣∣−∣∣θ(0)

ab

∣∣), for θab ≈ θ
(0)
ab ,

where θ
(0)
ab is the unpenalized maximum likelihood estimate

and Pλ(θ) denotes the penalty function of SCAD. It can be
represented by

l(�) ≈ trace(S�) − log det�

+
∑

a �=b

[
Pλ

(∣∣θ(0)
ab

∣∣)+P ′
λ

(∣∣θ(0)
ab

∣∣)(∣∣θab
∣∣−∣∣θ(0)

ab

∣∣)].

For m = 1, 2, · · · , iteratively solve until the sequence con-
verges

�(m+1) =argmin
�	0

{
trace(S�)

− log det� +
∑

a �=b

P ′
λ

(∣∣θ(m)
ab

∣∣)∣∣θab
∣∣
}
.

The SCAD penalty provides a balanced approach between
hard and soft thresholding. Although the L1 penalty is known
for its efficacy in variable selection, it shrinks all coefficients
uniformly from time to time and this induces a possibility
of reducing the influence of significant variables. The SCAD
penalty, however, adjusts the level of regularization based on
the absolute values of coefficients with a nonlinear penalty
function. For detailed advantages of using SCAD, see [13].

3 The proposedMethods

3.1 Basic formulation

In high-dimensional settings, we encounter two major chal-
lenges in estimating the CS. Typically, standardization is
applied in SDR. However, when the number of predictors (p)
exceeds the sample size (n), the covariance matrix becomes
singular, and standardization is no longer feasible. Further-
more, we can obtain only H − 1 sufficient predictors with
H slices, since the rank of the objective matrix depends on
the number of slices for SIR. In particular, the CS cannot be
well estimated when the response variable is binary and the
true dimensionality is two or greater. To address these prob-
lems, we propose algorithms for graphical model-based SIR,
SAVE, and DR incorporating the SCAD penalty, referred to

as SCAD-SIR, SCAD-SAVE, and SCAD-DR, respectively.
We further extend the ideas to Glasso based DR (GraphDR).

Firstly, we compute the sample covariance matrix, repre-
sented as ŜX = (1/n)

∑n
i=1(Xi −X̄)(Xi −X̄)T. The next step

involves using the SCAD or Glasso to estimate the inverse
covariance matrix, denoted by �̂X = �̂−1. The inverse
covariance matrix of the SCAD version can be estimated
by

�̂X = argmin
�X	0

{
trace(ŜX�X) − log det�X

+
∑

a �=b

pλ(|θX;ab|)
}
, (2)

where θX;ab denotes the (a, b)-th element of�X. The inverse
covariance matrix of the Glasso version can be estimated by

�̂X = argmin
�X	0

{
trace(ŜX�X)

− log det�X + λn1
∑

a �=b

|θab|
}
.

(3)

Next, we determine the inverse square root of the estimated
precision matrix �̂−1/2 and can standardize the random vec-
tors in the high-dimensional situation. Secondly,we calculate
the objective matrices of a variety of SDR methods, by com-
puting the empirical objective matrix ŜMl , and applying the
SCADorGlasso. The inverse covariancematrix of the SCAD
version can be estimated by

�̂Ml = argmin
�Ml 	0

{
trace(ŜMl�Ml ) − log det�Ml

+
∑

a �=b

pλ(|ωMl ;ab|)
}
, (4)

whereωMl ;ab is (a, b)-th element of�Ml . The inverse covari-
ance matrix of the Glasso version can be estimated by

�̂Ml =argmin
�Ml 	0

{
trace(ŜMl�Ml )

− log det�Ml + λn2
∑

a �=b

|ωMl ;ab|
}
.

(5)

By estimating the objective matrix from �̂−1, we can obtain
the estimated covariance matrix 
̂ = �̂−1, which has full
rank. Ultimately, we can approximate the CS, considering
more directions than the number of slices H . Note that the
detailed procedures are provided in the following section.

3.2 Sample level estimation

The SCAD-SIR, SCAD-SAVE, SCAD-DR, and GraphDR
methods share a common structure for estimating the CS.
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They combine dimension reduction methods with regular-
ization either via the SCAD penalty or Glasso. However,
they are differ in how they model objective matrix.

Wefirst compute the samplemean X̄ and obtain the sample
covariance matrix from observations, represented as ŜX =
(1/n)

∑n
i=1(Xi − X̄)(Xi − X̄)T. Next, the SCAD penalty

(2) is applied to estimate the inverse covariance matrix of
SCAD-SIR, SCAD-SAVE, and SCAD-DR,which is denoted
by �̂X = �̂−1. In our implementation, we adapt a = 3.7,
as suggested by [13] and compute the inverse square root of
the estimated precision matrix �̂−1/2. GraphDR used Glasso
penalty (3) to obtain the precision matrix and �̂−1/2. The
standardized random vectors Ẑ are subsequently obtained.

The next step involves partitioning the range of Y into h
non-overlapping intervals. Consequently, Ỹ takes the value
l if Y falls in the l-th interval, l = 1, . . . , h. This proce-
dure is unnecessary if the value of Y is categorical. After
slicing the response variable Y , we compute the empiri-
cal objective matrix for SCAD-SIR, represented as ŜMl =
(nh/n)

∑h
l=1 M̂l M̂T

l where M̂l = En(Ẑ|Y ∈ Kl). The can-

didate matrix of SCAD-SAVE can be constructed as ŜM2l =
ĉov(Z|Y ∈ Kl). In SCAD-DR, the combinations of ŜMl and
ŜM2l are used. The next procedure involves finding an inverse
of these objective matrices. This can be accomplished by
applying (4) to ŜMl for SCAD-SIR, ŜM2l for SCAD-SAVE,
and both of them to SCAD-DR. Again, we use a = 3.7, as
recommended by [13]. GraphDR is similar to SCAD-DR but
we use Glasso in (5) instead of the SCAD penalty in (4).
Our objective matrix is an inverse of these results. Similar to
[34],we address amajor limitation of classical SIR,where the
number of non-zero eigenvalues is restricted to H − 1, mak-
ing it problematic for a binary response variable. Our method
ensures a full-rank matrix and allows more directions to be
identified than the number of slices.Moreover, this algorithm
guarantees the positive definiteness of the objective matrix,
a property not always secured in classical SIR.

Finally, for all SCAD-SIR, SCAD-SAVE, SCAD-DR, and
GraphDR, we obtain the eigenvalues and the eigenvectors for
via eigendecomposition of these objective matrices . Letting
the first r eigenvectors be ν̂r , where k = 1, · · · , r , the esti-
mate of SY |X is �̂−1/2(ν̂1, · · · , ν̂r ).

To solve SCAD penalty, we utilize the coordinate descent
algorithm, which is well-known for handling nonconvex
penalties. This approach iteratively updates each element of
the precision matrix while keeping the others fixed, solving
the penalized optimization problem for that specific element.
To address the piecewise nature of the SCAD penalty, a spe-
cialized proximal operator is used. This induces efficient
updates and sparsity in the resulting precision matrix. The
algorithm typically initializes the precision matrix using a
model-based method, such as Glasso, to provide a stable

starting point. The detailed procedures for constructing the
CS on sample level data are in Algorithms 1, 2, 3, and 4.

Algorithm 1 SCAD-SIR algorithm

1. Let the sample mean as X̄ and the sample covariance as ŜX =
(1/n)

∑n
i=1(Xi − X̄)(Xi − X̄)T . Compute the estimated value for �̂X

with the SCAD:

�̂X = argmin
�X

{
trace(ŜX�X) − log det�X +

∑

a �=b

pλ(|θX;ab|)},

where θX;ab denotes the (a, b)-th element of �X, pλ(·) is from (1).

We can obtain �̂
−1/2
X using �̂X.

2. Compute the standardized random vectors as

Z = �̂−1/2(Xi − X̄), i = 1, · · · , n.

3. Divide the range of the response variable into h slices and replace
each Y with Ỹl for Y ∈ Kl , l = 1, · · · , h. Let the number of obser-
vations of Ỹl in the slice h be nl .
4. Approximate E(Z|Y ∈ Kl ) by

M̂l = En(Z|Y ∈ Kl) = En[ZI (Y ∈ Kl)]
En[I (Y ∈ Kl )] , l = 1, · · · , h.

5. Compute the empirical covariance matrix ŜMl =
∑h

l=1(nl/n)M̂l M̂T
l and obtain the estimated value for �̂Ml with the

SCAD:

�̂Ml = argmin
�Ml

{
trace(ŜMl �Ml ) − log det�Ml +

∑

a �=b

pλ(|ωMl ;ab|)
}
,

where ωMl ;ab is (a, b)-th element of �Ml and pλ(·) is from (1).
6. Let ν̂1, . . . , ν̂r be the first r eigenvectors of the estimated covari-
ance matrix 
̂SIR ≡ �̂−1

Ml
and let β̂k = �̂−1/2ν̂k , k = 1, . . . , r . The

sufficient predictors are β̂T
k (X1 − X̄), . . . , β̂T

k (Xn − X̄), k = 1, . . . , r .

3.3 Theoretical results

Here, we present the detailed theoretical outcomes of SCAD-
SIR, SCAD-SAVE, and SCAD-DR. Most of the results are
similar to [34] and we modify the previous results since we
use the SCAD penalty instead of the L1 penalty. Denote the
number of variables, the number of nonzero elements in the
precision matrix, and the number of slices, all of which are
allowed to depend on the sample size n, as pn , sn , and Hn ,
respectively.

3.3.1 Definitions

We first introduce notation and definitions that will be used
to state our regularity conditions clearly.

(D.1) Let �0 = �−1
0 , where θ0;ab denotes the (a, b)-th

element of �0. Define the set of nonzero elements as

S1 = {(a, b) : θ0;ab �= 0}.
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Algorithm 2 SCAD-SAVE algorithm
Steps 1 and 2 are identical to those in Algorithm 1.

3. Divide the range of the response variable into h slices and replace
each Y with Ỹl for Y ∈ Kl , l = 1, · · · , h. Let the number of obser-
vations of Ỹl in the slice h be nl .
4. Approximate ĉov(Z|Y ∈ Kl) by

ŜM2l = ĉov(Z|Y ∈ Kl ) = En[ZZT I (Y ∈ Kl )]
En[I (Y ∈ Kl)] , l = 1, · · · , h,

and obtain the estimated value for �̂M2l with the SCAD:

�̂M2l = argmin
�M2l

{
trace(ŜM2l �M2l ) − log det�M2l

+
∑

a �=b

pλ(|ωM2l ;ab|)
}
,

where ωM2l ;ab is (a, b)-th element of �M2l and pλ(·) is from (1).
5. Compute the estimated covariance matrix:


̂SAVE =
h∑

l=1

(nl/n)[Ip − �̂−1
M2l

][Ip − �̂−1
M2l

]T.

6. Let ν̂1, . . . , ν̂r be the first r eigenvectors of the estimated covariance
matrix 
̂SAVE and let β̂k = �̂−1/2ν̂k , k = 1, . . . , r . The sufficient
predictors are β̂T

k (X1 − X̄), . . . , β̂T
k (Xn − X̄), k = 1, . . . , r .

We define

an1 = max
(a,b)∈S1

p′
λn1

(|θ0;ab|),
bn1 = max

(a,b)∈S1
p′′
λn1

(|θ0;ab|),

where p′
λ(·) and p′′

λ(·) denote the first and second
derivatives of the penalty function pλ(·), respectively.
The number of nonzero off-diagonal elements in �0 is
denoted by sn1.
(D.2) Let �0 = 
−1

0 , where ω0;cd denotes the (c, d)-th
element of �0. Define the set of nonzero elements as

S2 = {(c, d) : ω0;cd �= 0}.

We define

an2 = max
(c,d)∈S2

p′
λn2

(|ω0;cd |),
bn2 = max

(c,d)∈S2
p′′
λn2

(|ω0;cd |),

and denote by sn2 the number of nonzero off-diagonal
elements in �0.

3.3.2 Regularity Conditions

We now state the assumptions required for our theoretical
results.

Algorithm 3 SCAD-DR algorithm
Steps 1 and 2 are identical to those in Algorithm 1.

3. Divide the range of the response variable into h slices and replace
each Y with Ỹl for Y ∈ Kl , l = 1, · · · , h. Let the number of obser-
vations of Ỹl in the slice h be nl .
4. Approximate E(Z|Y ∈ Kl ), ĉov(Z|Y ∈ Kl ) by

M̂1l = En(Z|Y ∈ Kl ) = En[ZI |Y ∈ Kl ]
En[I (Y ∈ Kl )] , l = 1, · · · , h,

ŜM2l = ĉov(Z|Y ∈ Kl) = En[ZZT I (Y ∈ Kl ]
En[I (Y ∈ Kl)] , l = 1, · · · , h.

5. Compute the empirical covariance matrix ŜM1l =
(nl/n)

∑h
l=1 M̂1l M̂T

1l and the estimated values for �̂M1l , �̂M2l

with the SCAD:

�̂M1l = argmin
�M1l

{
trace(ŜM1l �M1l ) − log det�M1l +

∑

a �=b

pλ(|ωM1l ;ab|)
}
,

�̂M2l = argmin
�M2l

{
trace(ŜM2l �M2l ) − log det�M2l +

∑

a �=b

pλ(|ωMl ;ab|)
}
,

where ωM1l ;ab is (a, b)-th element of �M1l , ωM2l ;ab is (a, b)-th ele-
ment of �M2l and pλ(·) is from (1).
6. From matrices 
̂M1l ≡ �̂−1

M1l
, 
̂M2l ≡ �̂−1

M2l
, compute

�̂1 =
h∑

l=1

En[I (Y ∈ Kl )]
̂2
M2l

, �̂2 =
h∑

l=1

En[I (Y ∈ Kl )](
̂M1l 
̂
T
M1l

)2,

�̂3 = (

h∑

l=1


̂T
M1l


̂M1l )(

h∑

l=1


̂M1l 
̂
T
M1l

),

and obtain 
̂DR = 2�̂1 + 2�̂2 + 2�̂3 − 2Ip .
7. Let ν̂1, . . . , ν̂r be the first r eigenvectors of 
̂DR and let β̂k =
�̂−1/2ν̂k , k = 1, . . . , r . The sufficient predictors are β̂T

k (X1 −
X̄), . . . , β̂T

k (Xn − X̄), k = 1, . . . , r .

(C.1) The minimum and maximum eigenvalues of the
true covariance matrices �0 and 
0 satisfy:

0 < κ1,min ≤ φmin(�0) ≤ φmax(�0) ≤ κ1,max < ∞;
0 < κ2,min ≤ φmin(
0) ≤ φmax(
0) ≤ κ2,max < ∞,

where φmin(·) and φmax(·) denote theminimum andmax-
imum eigenvalues, respectively, and 
0 = cov(E[X |
Y ]). Here, κ1,min, κ1,max, κ2,min, and κ2,max are positive
constants.
(C.2) For some positive constants C1 and C2, the follow-
ing rate conditions hold:

an1 =O
(
(1 + pn/(sn1 + 1))

√
log(pn)/n

)
,

bn1 =o(1), min
(a,b)∈S1

|θ0;ab|
λn1

> C1,
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Algorithm 4 GraphDR algorithm

1. Let the sample mean as X̄ and the sample covariance as ŜX =
(1/n)

∑n
i=1(Xi − X̄)(Xi − X̄)T . Compute the estimated value for �̂X

with the Glasso:

�̂X = argmin
�X

{
trace(ŜX�X) − log det�X + λn1

∑

a �=b

|θab|
}
,

and obtain �̂
−1/2
X using �̂X.

2. Compute the standardized random vectors

Ẑ = �−1/2(Xi − X̄), i = 1, · · · , n.

3. Divide the range of the response variable into h slices and replace
each Y with Ỹl for Y ∈ Kl , l = 1, · · · , h. Let the number of obser-
vations of Ỹl in the slice h be nl .
4. Compute M̂1l and ŜM2l following the same procedure in Algo-
rithm 3.
5. Compute the empirical covariance matrix ŜM1l = (nl/n)
∑h

l=1 M̂1l M̂T
1l and the estimated values for �̂M1l , �̂M2l with the

Glasso:

�̂M1l = argmin
�M1l

{
trace(ŜM1l �M1l ) − log det�M1l + λn2

∑

a �=b

|ωM1l ;ab|
}
,

�̂M2l = argmin
�M2l

{
trace(ŜM2l �M2l ) − log det�M2l + λn2

∑

a �=b

|ωM2l ;ab|
}
.

h
6. From matrices 
̂M1l ≡ �̂−1

M1l
, 
̂M2l ≡ �̂−1

M2l
, compute

�̂1 =
h∑

l=1

En[I (Y ∈ Kl )]
̂2
M2l

,

�̂2 =
h∑

l=1

En[I (Y ∈ Kl)](
̂M1l 
̂
T
M1l

)2, and

�̂3 = (

h∑

l=1


̂T
M1l


̂M1l )(

h∑

l=1


̂M1l 
̂
T
M1l

),

and obtain 
̂DR = 2�̂1 + 2�̂2 + 2�̂3 − 2Ip .
7. Let ν̂1, . . . , ν̂r be the first r eigenvectors of 
̂DR and let β̂k =
�̂−1/2ν̂k , k = 1, . . . , r . The sufficient predictors are β̂T

k (X1 −
X̄), . . . , β̂T

k (Xn − X̄), k = 1, . . . , r .

an2 =O
(
(1 + pn/(sn2 + 1))

√
log(pn)/Hn

)
,

bn2 =o(1), min
(c,d)∈S2

|ω0;cd |
λn2

> C2.

(C.3) The penalty function pλ(·) is singular at the origin
and satisfies:

lim
t→0

pλ(t)

λt
= K > 0.

(C.4) There exist constants U1, U2, V1 and V2 such that
for all θ1, θ2 > U1λn1,

|p′′
λn1

(θ1) − p′′
λn1

(θ2)| ≤ V1|θ1 − θ2|,

and similarly, for all θ1, θ2 > U2λn2,

|p′′
λn2

(θ1) − p′′
λn2

(θ2)| ≤ V2|θ1 − θ2|.

(C.1) gives uniform bounds to eigenvalues of �0 and 
0.
Condition (C.2) is utilized to prove consistency, where large
values ofan1, bn1,an2, andbn2 indicate that the variance asso-
ciatedwith the likelihood is influenced by the bias introduced
through the penalty. The third condition induces sparsity and
the fourth condition is for a smoothing of the penalty func-
tion.

3.3.3 Convergence rate

The following propositions are key components of our
method.

Proposition 1 Under regularity conditions (C.1)-(C.4), if

(pn + sn1)logpn/n = O(λ2n1),

(pn + sn1)(logpn)
k/n = O(1),

(pn + sn2)logpn/Hn = O(λ2n2),

(pn + sn2)(logpn)
k/Hn = O(1)

for some k > 1, there exist local minimizers �̂X and �̂ such
that

‖ �̂−1 − �−1
0 ‖2F= Op

( (pn + sn1)log pn
n

)
,

‖ 
̂−1 − 
−1
0 ‖2F= Op

( (pn + sn2)log pn
Hn

)
,

where ‖ · ‖F is the Frobenious norm. For these minimization
results, we recommend referring to the proof of Theorem 1
of [20].

Proposition 2 Under regularity conditions (C.1)-(C.4), we
have

||�̂X 
̂−�X;0
0||2
= Op

(√
log pn

( pn + sn1
n

+ pn + sn2
Hn

))
.

Proof

‖�̂−1
̂ − �−1
0 
0 ‖2

=‖ �̂−1
̂ − �̂−1
0 + �̂−1
0 − �−1
0 
0 ‖2

≤ ‖ �̂−1
̂ − �̂−1
0 ‖2 + ‖ �̂−1
0 − �−1
0 
0 ‖2

≤ ‖ �̂−1 ‖2‖ 
̂ − 
0 ‖2
+ ‖ �̂−1 − �−1

0 ‖2‖ 
0 ‖2 .
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where ‖ · ‖2 is the operator norm. It is trivial that ‖
�̂−1 ‖2= Op(1) and ‖ 
0 ‖2= O(1). ‖ 
̂ − 
0 ‖2=
Op

(√
(pn+sn2)logpn

Hn

)
is from [34]. By combining these

results with Proposition 1, we can achieve the desired result.
��

4 Numerical experiments

In this section, we demonstrate the competitiveness of our
method using a variety of numerical experiments by com-
paring linear SDR methods (SIR, SAVE, and DR), the graph
informed SDR estimation (GraphSIR andGraphSAVE) from
[34] with our method (SCAD-SIR, SCAD-SAVE, SCAD-
DR, and GraphDR). Additionally, we illustrate our approach
with two cases: the first involves a continuous response vari-
able, while the second addresses a binary response variable
in a classification problem. Finally, we conduct a compari-
son of our proposed methods with BCov-SDR (Zhang and
Chen 49), a recently developed and robust SDR method
that leverages ball covariance to address challenges such
as outliers, heavy-tailed distributions, and minimal model
assumptions. By including BCov-SDR in our analysis, we
aim to highlight the competitiveness of our methods against
a state-of-the-art approach in the field. The code used to
conduct these numerical analyses is available on GitHub at
https://github.com/kyongwonkim/DR-SCAD.

We use the following measure to evaluate the distance
between the true vector β and the estimated vector β̂. This
measure is computed by summing the squares of the differ-
ences between each corresponding element of the vectors and
taking the square root of this sum. This approach provides
a straightforward and intuitive representation of the distance
between β and β̂ as

d(β, β̂) =‖ β̂(β̂Tβ̂)−1β̂T − β(βTβ)−1βT ‖F ,

where ‖ · ‖F denotes the Froebenious norm.
For the tuning parameters for SCAD-SIR, SCAD-SAVE,

and SCAD-DR methods, the selection of λ and the initial-
ization of the precision matrix follow a process to achieve
both stability and accuracy. The initial value for the precision
matrix is obtained using the Glasso, where the covariance
matrix is estimated by minimizing the log-likelihood func-
tion, subject to a penalization term. The penalization strength
for Glasso is determined through cross-validation, where a
grid of λ values is tested to identify the value that mini-
mizes the cross-validated error. This process ensures that
the resulting precision matrix provides a sparse and stable
estimate, which serves as the starting point for the SCAD-
penalized optimization. The selection of the tuning parameter
λ for the SCAD penalty, which controls the degree of spar-

sity in the estimated precision matrix, is carried out through
cross-validation.A sequence ofλvalues is generated, starting
from a maximum value, λmax, which shrinks all coefficients
to zero, and decreasing incrementally. This range ensures
that both highly sparse and less sparse models are explored.
For each λ in the grid, the model’s performance is evaluated
using cross-validation, with the goal of selecting the λ that
minimizes the cross-validated error. By combining a robust
initialization using Glasso with a carefully tuned λ selec-
tion via cross-validation, the SCAD-SIR, SCAD-SAVE, and
SCAD-DR methods achieve both reliable convergence and
accurate, interpretable results.

4.1 Case 1: Continuous response variable

We compare the performance of the proposed method on
generated data. We use the following five models:

Model 1 : Y = X1 + X2 + X3 + X4 + σε, where r = 1

Model 2 : Y = (2 + X2
1)

4
+ X2 + σε, wherer = 2

Model 3 : Y = X1 + 0.3 · X2

X3 − 0.7
+ σε, wherer = 3

Model 4 : Y = X1 + sin(X2)

X3
+ σε, wherer = 3

Model 5 : Y = X1 + X2 + log(X2
3) + σε, where r = 2

where ε ∼ N (0, 1), σ = 0.2, the predictor X is generated
from N (0, Ip), and r is a structural dimensionwhich refers to
the number of linear combinations of the predictors that are
sufficient to capture all the information about the response
variable. We take n ∈ {50, 100} and p ∈ {10, 50, 100} to
investigate the effect of the sample size and dimension in
estimation. We set the true structural dimension r from 1, 2,
or 3.

Results computed from 100 repetitions are summarized
in Tables 1 to 5 for each model. Here, H is the number of
slices, n is the sample size, and p is the predictors’ dimen-
sion. Table 1 provides the average and standard deviation
of the results distance for Model 1, where SIR outperforms
other methods when p = 10. Furthermore, when p is set to
50 or 100, GraphSIR excels relative to competing methods
for a sample size of n = 50, and GraphDR demonstrates
superior performance at n = 100. Table 2 details the results
for Model 2 and we can observe that SCAD-SIR showing
optimal performance. For Model 3, as illustrated in Table 3,
SCAD-SIR achieves the smallest distance between the true
and estimated directions. Table 4 shows the performance in
Model 4, where GraphSAVE slightly outperforms our pro-
posedmethodwhen the sample sizen is 50, andSCAD-SAVE
remains competitive with all of the existing methods across
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all settings. Finally, Table 5 reports metrics for Model 5,
where SCAD-SIR consistently outperforms other methods.
From these results, we can observe that the performance of
SCAD-SIR is superior in more complex models.

We generate Model 5′, which shares the same structure
asModel 5, but with the predictors X ∈ R

40 generated from
a multivariate normal distribution N (0,�−1), where � is
a 40 × 40 precision matrix. The diagonal entries of � are
1, 1, 1, 1.333, 3.010, 3.203, 1.543, 1.270, 1.554, 3, 1, 1, 1.2,
1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1.4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1.2, 2, 1, and the off-diagonal entries are specified as fol-
lows: θ3,5 = θ5,3 = 1.418, θ4,10 = θ10,4 = 0.744,
θ5,9 = θ9,5 = 0.519, θ5,10 = θ10,5 = 0.577, θ13,17 =
θ17,13 = 0.287, θ17,20 = θ20,17 = 0.542, θ14,15 = θ15,14 =
0.998, θ21,23 = θ23,21 = 0.864, θ28,30 = θ30,28 = 0.143,
θ38,40 = θ40,38 = 0.142, and θ33,37 = θ37,33 = 0.247,
where θi j represents the (i, j)-th element of �. As shown
in Table 6, the SCAD based methods, including SCAD-SIR,
SCAD-SAVE, and SCAD-DR, demonstrate strong compet-
itiveness compared to classical methods such as GraphSIR,
GraphSAVE, and GraphDR when the predictors exhibit a
correlated structure.

4.2 Case 2: Binary response variable

In case 2, we follow the setup of the example introduced
in [22] and [32], twist problem, to investigate the binary
response classification performance. There are two classes,
with one corresponding to each curve.

Model 6 :

Class 1 : X1 = 20 cos θ + U1 + 1, X2 = 20 sin θ +
U2, where U1, U2 and θ are independent generated
from N (0, 1), N (0, 1) and N (π, (0.25π)2), respectively;
X3,…, X p are independent generated from N (0, 1).

Class 2 : X1 = 20 cos θ +U1, X2 = 20 sin θ +U2,
where U1, U2 and θ are independent generated from
N (0, 1), N (0, 1) and N (π, (0.25π)2), respectively; X3,

…, X p are independent generated from N (0, 1).

In our study,wegenerate samples of size 300 for each class
and perform standardization on the sample data. The CS is
spanned by ((1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0))T. Figure
1 presents the results of the classification performance when
p = 20. The left panel of Figure 1 represents the true shape
with different colors indicating the two classes. In addition,
the second and third panels illustrate the two directions esti-
mated by GraphSIR and SCAD-SIR, respectively. We can
see that SIR estimates only one direction, even though the
true dimension of the CS is two. On the other hand, both
GraphSIR and SCAD-SIR can effectively estimate the CS

with p = 20. Next, we increase the number of the variables,
p, to investigate the effect of the sample size and dimension
in estimation. Figure 2 shows the results of the performance
when p = 300. The left panel of Figure 2 shows the true
shape with different colors indicating the two classes. In this
case, since the response is binary, SIR is limited to estimating
only one direction. The second and third panels of Figure 2
for p = 300 display the two directions estimated by Graph-
SIR and SCAD-SIR.We can observe that bothGraphSIR and
SCAD-SIR estimate the true shape well. To bemore specific,
SCAD-SIR performs better than GraphSIR in estimating the
CS when p = 300. Furthermore, we increase the number of
the variables, p, from 300 to 1000. In this case, SIR cannot
estimate the CS, since the number of variables (p) is larger
than the number of observations (n). Figure 3 illustrates the
results of the performance when p = 1000. The left panel of
Figure 2 shows the true shape with different colors indicating
the two classes. The second and third panels of Figure 3 for
p = 1000 display the two directions estimated by Graph-
SIR and SCAD-SIR. As the number of variables increases
to 300 and 1000, we can see that a performance discrep-
ancy between the two methods becomes apparent. Notably,
the accuracy of GraphSIR decreases with a growing number
of features, while SCAD-SIR continues to provide accurate
estimates. In summary, this experiment highlights the com-
petitiveness of SCAD-SIR to handle the high-dimensional
datasets with strong robustness.

4.3 Case 3: Comparisons with the recent method

BCov-SDR (Zhang and Chen 49) is a SDR method designed
to enhance robustness and flexibility by leveraging ball
covariance, a dependence measure that effectively captures
both linear and nonlinear relationships between variables.
Unlike traditional methods, BCov-SDR does not impose
stringent conditions such as linearity, constant variance,
or continuity on predictors and responses. This makes it
highly adaptable, even in the presence of outliers or heavy-
tailed distributions. The method defines the central subspace
by maximizing ball covariance subject to constraints. It
is capable of handling multivariate responses and discrete
or categorical predictors, expanding its applicability across
diverse datasets.

To compare our methods with BCov-SDR, we consider
the following model.

Model 7 : Y = βTX + σε, where r = 1
where ε ∼ N (0, 1), σ = 0.2, the predictor X is generated

from N (0, Ip) andβ = (1,−1, 0.5, 1, 5, 0, 0, 0, · · · , 0).We
take n ∈ {50, 100} and p ∈ {50, 100, 200} to investigate the
effect of the sample size and dimension in estimation. We set
the true structural dimension r at 1.

Table 7 compares the performance of our proposed
methods-SCAD-SIR,SCAD-SAVE,SCAD-DR, andGraphDR-
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Fig. 1 Visualization of results for Model 6 (p = 20, n = 600). The left panel illustrates the true shape, the middle panel shows the two directions
obtained from GraphSIR, and the right panel displays the two directions estimated from SCAD-SIR
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Fig. 2 Visualization of results for Model 6 (p = 300, n = 600). The left panel illustrates the true shape, the middle panel shows the two directions
obtained from GraphSIR, and the right panel displays the two directions estimated from SCAD-SIR

Fig. 3 Visualization of results for Model 6 (p = 1000, n = 600). The left panel illustrates the true shape, the middle panel shows the two directions
obtained from GraphSIR, and the right panel displays the two directions estimated from SCAD-SIR

with BCov-SDR, GraphSIR, and GraphSAVE, using the
distance betweenβ and β̂ as the performancemetricwith 100
repetitions. The results clearly demonstrate that SCAD-SIR,
SCAD-DR, and GraphDR outperform BCov-SDR, achiev-
ing smaller distances and thus more accurate estimates of
the SDR directions. In contrast, the SCAD-SAVE method
performs comparably to BCov-SDR, with distances that are
either on par with or slightly larger than those of BCov-SDR.

5 Real Data Analysis

We now apply SCAD-SIR, SCAD-SAVE, SCAD-DR, and
GraphDR to the eye gene dataset (Scheetz et al. 37), breast
cancer dataset (Augugliaro et al. 1), and Duke breast cancer
dataset (Wang et al. 42) to compare the performance of our
method with GraphSIR and GraphSAVE.

First, we consider the eye gene dataset (Scheetz et al. 37).
This is gene expression data collected from the eyes of 120
rats, focusing on understanding the genetic regulation of eye
function, with a particular interest in genes related to eye
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Table 6 Comparisons of the average and standard deviation of the distance between β̂ and β across various methods for Model 5′ (p = 40).

Classical method Graph SCAD

(n=50) SIR SAVE DR SIR SAVE DR SIR SAVE DR

H = 3 1.91 (0.07) 1.95 (0.04) 1.91 (0.07) 1.73 (0.18) 1.59 (0.21) 1.72 (0.15) 1.67 (0.18) 1.91 (0.09) 1.87 (0.10)

H = 5 1.92 (0.05) 1.93 (0.05) 1.91 (0.05) 1.82 (0.16) 1.58 (0.22) 1.82 (0.15) 1.66 (0.21) 1.94 (0.05) 1.90 (0.06)

H = 7 1.93 (0.06) 1.95 (0.05) 1.94 (0.05) 1.86 (0.17) 1.65 (0.22) 1.86 (0.14) 1.72 (0.21) 1.94 (0.04) 1.91 (0.06)

(n=100) SIR SAVE DR SIR SAVE DR SIR SAVE DR

H = 3 1.83 (0.08) 1.91 (0.08) 1.88 (0.07) 1.57 (0.18) 1.61 (0.22) 1.58 (0.15) 1.46 (0.14) 1.81 (0.14) 1.82 (0.10)

H = 5 1.84 (0.09) 1.92 (0.07) 1.88 (0.08) 1.57 (0.17) 1.49 (0.10) 1.58 (0.14) 1.47 (0.10) 1.87 (0.10) 1.86 (0.10)

H = 10 1.83 (0.08) 1.94 (0.05) 1.87 (0.09) 1.74 (0.18) 1.54 (0.17) 1.73 (0.18) 1.50 (0.12) 1.90 (0.06) 1.85 (0.08)

Table 7 Comparisons of the average and standard deviation of the distance between β̂ and β across various methods for Model 7.

Modern method Graph SCAD

n=50 (p = 50) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.40 (0.04) 0.59 (0.06) 1.46 (0.27) 0.57 (0.08) 0.54 (0.08) 1.65 (0.18) 1.02 (0.20)

H = 5 0.57 (0.06) 1.65 (0.20) 0.59 (0.07) 0.51 (0.08) 1.57 (0.15) 1.13 (0.18)

H = 7 0.54 (0.07) 1.57 (0.10) 0.62 (0.08) 0.50 (0.07) 1.47 (0.09) 1.27 (0.15)

(p = 100) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.41 (0.01) 0.63 (0.04) 1.54 (0.08) 0.71 (0.09) 0.58 (0.06) 1.69 (0.16) 1.10 (0.15)

H = 5 0.63 (0.05) 1.66 (0.15) 0.79 (0.11) 0.56 (0.06) 1.60 (0.08) 1.26 (0.12)

H = 7 0.62 (0.06) 1.57 (0.14) 0.90 (0.14) 0.55 (0.06) 1.47 (0.01) 1.37 (0.07)

(p = 200) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.41 (0.04) 0.63 (0.03) 0.69 (0.20) 0.93 (0.23) 0.58 (0.04) 1.50 (0.02) 1.2 (0.11)

H = 5 0.62 (0.04) 1.52 (0.08) 1.14 (0.23) 0.57 (0.05) 1.64 (0.48) 1.31 (0.08)

H = 7 0.62 (0.03) 1.64 (0.04) 1.33 (0.15) 0.57 (0.04) 1.60 (0.10) 1.38 (0.05)

n=100 (p = 50) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.27 (0.18) 0.56 (0.05) 1.54 (0.04) 0.45 (0.03) 0.42 (0.07) 1.49 (0.15) 0.64 (0.09)

H = 5 0.55 (0.05) 1.51 (0.09) 0.43 (0.04) 0.40 (0.07) 1.49 (0.06) 0.72 (0.11)

H = 10 0.49 (0.05) 1.69 (0.09) 0.39 (0.04) 0.39 (0.07) 1.60 (0.14) 0.90 (0.16)

(p = 100) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.35 (0.11) 0.60 (0.04) 1.41 (0.15) 0.50 (0.03) 0.48 (0.06) 1.54 (0.17) 0.72 (0.09)

H = 5 0.59 (0.04) 1.52 (0.18) 0.47 (0.03) 0.45 (0.06) 1.55 (0.09) 0.84 (0.10)

H = 10 0.56 (0.05) 1.56 (0.11) 0.49 (0.05) 0.44 (0.06) 1.45 (0.04) 1.20 (0.15)

(p = 200) BCov-SDR SIR SAVE DR SIR SAVE DR

H = 3 1.39 (0.04) 0.63 (0.03) 1.64 (0.09) 0.55 (0.03) 0.52 (0.05) 1.55 (0.17) 0.75 (0.09)

H = 5 0.63 (0.03) 1.65 (0.03) 0.57 (0.03) 0.50 (0.05) 1.56 (0.08) 0.96 (0.11)

H = 10 0.62 (0.04) 1.55 (0.19) 0.69 (0.05) 0.50 (0.05) 1.45 (0.04) 1.35 (0.09)

diseases. The dataset includes expression levels for 18,976
genes. This dataset is relevant for studying genetic factors
related to eye function and disease. Here, we use the expres-
sion level ofTRIM32, a gene involved in retinal development,
as the response variable, and select 200 other genes as pre-
dictor variables, resulting in n = 119 and p = 200. The
competitiveness of our method can be demonstrated by this
dataset because of the large number of predictors relative to
the sample size.

First, we screened out one outlier in the eye dataset. We
chose the number of slices to ensure that each slice contains a
sufficient amount of data and fixed the number of slices H to
3 and 10. We also change the estimated structural dimension
r̂ at six different levels r̂ = 1, 2, 3, 4, 5, 6. For each value
of r̂ , the dataset is initially projected onto a r̂ -dimensional
subspace, followedbyfitting a simple linear regressionmodel
to this reduced dataset. We evaluate the performance of each
method by using two metrics, the mean squared error (MSE)
and the leave-one-out cross-validation (LOO-CV). MSE is
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a widely used measure of model accuracy that evaluates the
average squared difference between the predicted values and
the actual values. MSE is calculated as

MSE = 1

n

n∑

i=1

(yi − ŷi )
2,

where yi is the actual value, ŷi is the predicted value, and
n is the number of observations. The smaller the MSE, the
better the model fits the data, as it indicates smaller devia-
tions between the predicted and actual values. LOO-CV is
a model validation method used to evaluate a model’s pre-
dictive performance. In LOO-CV, one observation from the
dataset is removed, the model is trained on the remaining
data. The model’s prediction is tested on the left out obser-
vation. This process is repeated for each observation in the
dataset. The prediction error is averaged to provide an esti-
mate of the model’s performance. The LOO-CV error can be
computed as

LOO-CV = 1

n

n∑

i=1

(yi − ŷ(−i))
2,

where yi is the actual value and ŷ(−i) is the predicted value
from the model trained without the i-th observation.

The result, summarized in Tables 8 and 9, shows the MSE
and LOO-CV for various structural dimensions and the num-
ber of slices (H = 3, 10). It is evident from Tables 8 and 9
that SCAD-DR and GraphDR consistently outperform both
GraphSIR and GraphSAVE across the different structural
dimensions. We can see that the SCAD-DR provides the best
performance when the structural dimension is set at r̂ = 5,
highlighting the effectiveness of our approach. Furthermore,
Tables 8 and 9 also indicate that the number of slices is not
highly sensitive.

The strong performance of our SCAD-SIR, SCAD-SAVE,
and SCAD-DR methods on this dataset, as evidenced by
both lowMSE and favorable LOO-CV results, indicates that
these approaches are highly effective at identifying the key
predictors of TRIM32 gene expression. This suggests that
our dimension reduction methods, combined with the SCAD
penalty, successfully capture the underlying relationships,
while maintainingmodel simplicity and reducing overfitting.

The breast cancer dataset by [1] contains gene expression
data collected from breast cancer patients. This study aimed
at identifying genetic markers associated with the disease.
This high-dimensional dataset includes a large number of
gene expression profiles as predictor variables (p = 287) and
clinical outcome (binary) as a response variable. This dataset
contains 52 participants which make this dataset as high-
dimension and low sample size dataset. This is typically used

to study the relationship between gene expression profiles
and cancer outcomes.

For the breast cancer dataset, we generate receiver operat-
ing characteristic (ROC) curves for the six models in Figure
4. These ROC curves are useful in evaluating performance
of the classification model by examining the area under
the curve (AUC), which reflects the trade-off between sen-
sitivity (the true positive rate, calculated as TP

TP+FN) and

1 − specificity (the false positive rate, computed as FP
TN+FP ).

There are several methods for determining the structural
dimension in SDR. One common approach is the sequential
test, as comprehensively reviewed in [24], where hypotheses
are tested sequentially to identify the number of significant
dimensions. Another approach involves the ladle estima-
tor (Luo and Li 26). However, they are quite challenging
to find a structural dimension in p > n situation. We
recommend cross-validation combined with penalized SDR
method where different structural dimensions are tested and
the one with the lowest prediction error on a validation set is
chosen. Here, we choose the structural dimension based on
the cross-validation method. As shown in Figure 4, we can
observe that SCAD-DR and GraphDR outperform the other
methods. Especially, SCAD-DR achieves a higher classifi-
cation accuracy with an AUC of 0.965, surpassing all other
models. In addition, the SCAD penalty-based methods per-
form competitively in accurately identifying true positives
while simultaneously maintaining a low false positive rate.
Consequently, Figure 4 indicates the effectiveness of our
methods in breast cancer prediction. The strong performance
of our SCAD-SIR and SCAD-DR methods on the breast
cancer dataset suggests that these approaches are highly
effective at identifying relevant gene expressions for distin-
guishing between different outcomes. This result implies that
our methods work well in capturing key features from high-
dimensional genomic data and are well-suited for improving
the accuracy of classification in complex biological datasets.

Finally, we consider the Duke breast cancer dataset (Wang
et al. 42). This dataset comprises 46 patient samples with
7129 gene expression measurements. The primary objective
of this study is to identify a small subset of genes that can
be used as prognostic or predictive markers for breast can-
cer. The samples are categorized into two groups estrogen
receptor-positive (ER+) and estrogen receptor-negative (ER-
).

To refine the analysis, we first select 917 genes correlated
with the COL2A1, MMP-7, CD24, PGK1, ESR1, and NAT1
expressions that have been found to be associated with breast
cancer (Fogel et al. 11; Duan et al. 9; Gold et al. 15; Zhang
et al. 53; Holst et al. 17; Bertram and Hass 3; Wakefield et al.
44; Bucan et al. 4). This results in a dataset with n = 46 and
p = 917. Subsequently, we apply the ladle estimator (Luo
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Table 8 MSE values, with the
numbers in brackets
representing the corresponding
LOO-CV errors, for various
methods applied to the eye gene
dataset (p = 200, n = 119,
H = 3). r̂ denotes the structural
dimension

Graphical method SCAD penalty method
r̂ GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

1 1.153(1.192) 1.141(1.213) 0.741(0.773) 1.147(1.192) 1.135(1.198) 0.668(0.697)

2 1.023(1.086) 1.139(1.278) 0.741(0.790) 1.026(1.094) 1.133(1.254) 0.646(0.684)

3 0.987(1.073) 1.138(1.298) 0.731(0.793) 0.974(1.058) 1.131(1.277) 0.472(0.522)

4 0.961(1.057) 1.107(1.285) 0.730(0.811) 0.951(1.051) 1.128(1.296) 0.452(0.521)

5 0.904(1.012) 1.107(1.313) 0.729(0.830) 0.917(1.027) 1.097(1.308) 0.451(0.530)

6 0.898(1.021) 1.097(1.361) 0.702(0.805) 0.861(0.980) 1.091(1.335) 0.451(0.539)

Table 9 MSE values, with the
numbers in brackets
representing the corresponding
LOO-CV errors, for various
methods applied to the eye gene
dataset
(p = 200, n = 119, H = 10). r̂
denotes the structural
dimension.

Graphical method SCAD penalty method
r̂ GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

1 1.223(1.268) 1.139(1.215) 1.221(1.264) 1.222(1.267) 1.145(1.242) 0.977(1.016)

2 1.068(1.138) 1.139(1.308) 0.857(0.913) 1.141(1.209) 1.136(1.269) 0.970(1.109)

3 1.040(1.126) 1.136(1.367) 0.721(0.784) 1.023(1.115) 1.121(1.298) 0.757(0.913)

4 1.011(1.118) 1.136(1.434) 0.714(0.800) 1.006(1.115) 1.120(1.343) 0.551(0.713)

5 0.958(1.084) 1.115(1.459) 0.699(0.792) 0.981(1.101) 1.113(1.376) 0.551(0.750)

6 0.955(1.105) 1.110(1.517) 0.687(0.795) 0.925(1.060) 1.099(1.417) 0.519(0.730)
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Fig. 4 The ROC curves on breast cancer dataset (p = 287, n = 52)

and Li 26) to determine the structure dimension of the data.
The chosen structural dimensions are as follows.

• GraphSIR: r̂ = 1
• GraphSAVE: r̂ = 5
• GraphDR: r̂ = 1
• SCAD-SIR: r̂ = 1
• SCAD-SAVE: r̂ = 5
• SCAD-DR: r̂ = 1

As illustrated in Figure 5, SCAD-DR exhibits superior per-
formance compared to other methods in identifying the SDR

Fig. 5 The ROC curves on Duke breast cancer dataset (p = 917, n =
46)

directions. This is particularly evident in its ability to effec-
tively discriminate between ER+ and ER- cases, which are
critical in classifying breast cancer subtypes based on estro-
gen receptor status. The reduced directions identified by
SCAD-DR capture the key variations in the data, allow-
ing for a clear separation between the two groups. These
results emphasize the practical utility of SCAD-DR in high-
dimensional classification tasks in biomedical applications
such as distinguishing between ER+ and ER- cases.
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6 Discussion

In this paper, we introduced a graphical model based SDR
method with the SCAD penalty to overcome the difficulties
from traditional SDR methods for analyzing high dimen-
sion, low sample size dataset. We further presented Glasso
based DR. We have provided compelling evidence of our
approach’s effectiveness, not only in achieving statistical
accuracy in high-dimensional settings but also in success-
fully classifying binary response data. When applied to
high-dimensional datasets, our approach consistently out-
performed established baselines, including SIR, SAVE, and
DR. Our approach demonstrated comparable or superior per-
formance when compared to the graph informed method
presented in [34], specifically GraphSIR and GraphSAVE.

Based on the empirical results, SCAD-SIR is best suited
for problems where the relationship between predictors
and response is primarily linear. SCAD-SAVE is preferable
for detecting nonlinear relationships and capturing variance
changes. SCAD-DR and GraphDR are the most appropriate
when dealing with highly nonlinear relationships and com-
plex interactions, offering greater flexibility at the cost of
increased complexity and computational demand. However,
to the best of our knowledge, it is important to note that
there is no strict criterion for choosing the most suitable SDR
method. The choice largely depends on the specific structure
of the data and the underlying assumptions about the rela-
tionships between predictors and the response. Practitioners
should consider the expected data structure, the nature of
the relationships they aim to capture, and computational effi-
ciency when selecting a method.

Recent advancements have been made in developing
methods for SDR that incorporate penalties. [43] proposes a
method for sparse Fréchet SDR in high-dimensional regres-
sion for non-Euclidean responses. They introduce amultitask
regression framework incorporating a nonconvex penalty to
identify sparse and low-dimensional representations of pre-
dictors. also introduces a new optimization algorithm called

the double approximation shrinkage-thresholding algorithm
to solve the nonconvex optimization problem.

SCAD (Fan and Li 13) simultaneously performs variable
selection and coefficient estimation, leading to more precise
and efficientmodeling. The penalty functions it uses are sym-
metric and nonconcave with singularities at the origin. These
functions minimize bias in large coefficients and guarantee
continuous solutions, unlike LASSO, which can introduce
bias. The SCAD approach is versatile and can be applied
to various model types, including parametric, nonparamet-
ric, and generalized linear models. Although, we choose
SCAD because it is well-established in practical use with
simpler iterative algorithms, in future research, graphical
model based SDR method found on some alternative penali-
ties can be investigated. For instance, [50] introducesMC+, a
method for combining the minimax concave penalty and the
penalized linear unbiased selection algorithm. The method
ensures selection consistency without relying on the strong
assumptions required by LASSO, even in high-dimensional
settingswhere p � n.Moreover,MC+ achieves certainmin-
imax convergence rates and unbiasedness.

Appendix

Tables 10 through 19 summarize the computational times
required for simulations conducted across Models 1 to 6, as
well as empirical analyses involving the eye gene dataset,
breast cancer dataset, and Duke breast cancer dataset. These
tables provide a detailed quantitative assessment of the com-
putational efficiency of the proposed SCAD-based methods
relative to existing Graph-based approaches. Our results
indicate that SCAD-SIR, SCAD-SAVE, and SCAD-DR
exhibit comparable computational performance to Graph-
SIR, GraphSAVE, and GraphDR, despite the additional
computational burden introduced by the SCAD penalty.

We evaluated the peak memory usage for each method
using Models 5 and 6 to assess computational efficiency
in terms of memory requirements in Tables 20 and 21.
The results indicate that the peak memory consumption of
the SCAD based methods is very similar to that of the
graph-based methods. This similarity further emphasize the
practicality of SCADbased approaches, as they achieve com-
petitive performance without imposing significant additional
memory demands, even in complex high-dimensional set-
tings.We conducted our computations on anAppleMacBook
Pro with an M2 Max chip and 32GB of RAM.
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Table 16 Comparison of the computation times (in seconds) for various methods applied to the eye gene dataset (p = 200, n = 119, H = 3).

Graphical method SCAD penalty method
r̂ GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

1 2.23 3.84 4.51 2.31 4.03 4.84

2 2.18 3.82 4.51 2.35 4.01 4.70

3 2.23 3.79 4.53 2.29 4.04 4.65

4 2.25 3.79 4.54 2.28 4.03 4.67

5 2.23 3.80 4.54 2.29 4.02 4.68

6 2.19 3.79 4.54 2.30 4.08 4.75

Table 17 Comparison of the computation times (in seconds) for various methods applied to the eye gene dataset (p = 200, n = 119, H = 10).

Graphical method SCAD penalty method
r̂ GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

1 2.16 9.44 10.40 2.27 10.02 10.75

2 2.20 9.41 10.31 2.28 9.95 10.76

3 2.23 9.50 10.28 2.27 9.98 10.91

4 2.23 9.60 10.17 2.26 9.96 10.91

5 2.20 9.65 10.32 2.27 9.97 10.86

6 2.21 9.62 10.61 2.31 10.05 10.90

Table 18 Comparison of the computation times (in seconds) for various methods applied to breast cancer dataset (p = 287, n = 52).

Graphical method SCAD penalty method
GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

2.43 3.35 4.05 2.57 3.68 4.46

Table 19 Comparison of the average of computation times (in seconds) for variousmethods applied toDuke breast cancer dataset (p = 917, n = 46).

Graphical method SCAD penalty method
GraphSIR GraphSAVE GraphDR SCAD-SIR SCAD-SAVE SCAD-DR

20.92 27.57 28.53 23.1 34.2 35.36
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