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Abstract
In this paper, we propose a novel functional nonlinear sufficient dimension reduction method based on the principal fitted
componentmodel. Our approach extends the concept of principal fitted components to functional data, covering the casewhere
both the predictors and responses are functions. We consider a general framework in which the predictor and response can
each be viewed as elements of potentially infinite dimensional Hilbert spaces. This includes the important scalar on function
and function on function cases as special instances. We generalize a nonlinear principal fitted component model within the
framework of reproducing kernel Hilbert space, leveraging the nestedHilbert spaces theory to characterize nonlinear structures
in functional data. The first space accommodates functions of random curves and the second space captures their nonlinear
relationships. To establish the theoretical validity of our approach, we develop an asymptotic theory that characterizes the
convergence behavior of the proposed estimator under mild regularity conditions. Extensive simulation studies demonstrate
that ourmethodoutperforms existing functional sufficient dimension reductionmethods, particularly in scenarioswith complex
nonlinear dependencies. The effectiveness of the proposed method is further validated through real data analysis.

Keywords Principal fitted component model · Sufficient dimension reduction · Functional data analysis · Reproducing kernel
Hilbert space · Kernel methods

1 Introduction

In modern statistical analysis, data that are collected in
the form of functions or curves over a continuum, com-
monly referred to as functional data, have gained significant
importance across a wide range of disciplines. Unlike tradi-
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tionalmultivariate data, functional data are inherently infinite
dimensional, making their analysis fundamentally differ-
ent and more complex. Such data arise naturally in various
scientific and applied fields, including growth curves in biol-
ogy, where researchers track the developmental patterns of
organisms over time, temperature profiles in climatology that
capture variations in atmospheric conditions across differ-
ent time scales, and spectral measurements in chemistry,
which record the absorption or emission of light at different
wavelengths. The infinite dimensional nature of functional
data presents unique analytical challenges, as conventional
statistical methods designed for finite dimensional data are
often inadequate. Consequently, specialized statistical meth-
ods have been developed to extract meaningful patterns,
reduce dimensionality, andmodel dependencies in functional
data, enabling researchers to gain deeper insights and make
more accurate predictions in their respective fields.

To address the complexity inherent in high-dimensional
or infinite dimensional data, sufficient dimension reduction
(SDR) methods have been extended to the functional data
setting. SDR seeks to reduce the dimensionality of predic-
tor variables while retaining essential information relevant
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to the response variable. Classical SDR, including sliced
inverse regression (Li 1991), sliced average variance esti-
mation (Cook and Weisberg 1991), contour regression (Li
et al. 2005), and directional regression (Li and Wang 2007),
have been widely applied for this purpose. In linear SDR, the
central subspace is defined as the smallest subspace spanned
by vectors η = (η1, · · · , ηd) such that Y X | ηTX . How-
ever, these methods typically rely on linearity assumptions,
which may not always hold in practice.

Extending this framework to nonlinear settings requires
generalizing the conditional independence assumption to
Y X | f (X), where f (X) = ( f1(X), · · · , fd(X)) consists
of nonlinear functions of X . However, this generalization
introduces significant challenges, as f (X) is not uniquely
identifiable,making it difficult to rigorously define the central
subspace. To address this issue, Lee et al. (2013) introduced
the concept of the central σ -field, which captures the min-
imal sufficient information needed for dimension reduction
in nonlinear settings.

Among various SDRmethods, the principal fitted compo-
nent (PFC) model, introduced by Cook (2007), stands out as
an effective model-based approach for dimension reduction
from the perspective of inverse regression. The PFC model
assumes that the conditional distribution of the predictor
X ∈ R

p given the response Y follows a specific structure,
facilitating dimension reduction while preserving essential
information. Let Xy denote a random vector distributed as
X | (Y = y), and assume that Xy follows a normal distribu-
tion with mean μ. The PFC model is formulated as

Xy = μ + �βgy + σε,

where μ ∈ R
p represents the mean vector, � ∈ R

p×d is an
orthonormal basis satisfying �T� = Id , and β ∈ R

d×r is a
coefficient matrix with d ≤ r . The term gy ∈ R

r is a known
vector-valued function of y satisfying �ygy = 0r×1. The
error vector ε ∈ R

p is assumed to be independent of Y with
mean zero and covariance matrix Ip. The likelihood function
of the PFC model can be written as

log L(μ;�;β; σ) = − pn

2
log σ 2

− 1

2σ 2

∑

y

‖ Xy − μ − �βgy ‖2 .
(1)

To estimate the central subspace, the partial maximum likeli-
hood approach is applied to (1) with respect to � and β. This
optimization problem reduces to finding the first d eigenvec-
tors of the covariancematrix ofXy , which span the dimension
reduced subspace. For further theoretical details and imple-
mentation, see Cook and Forzani (2008).

As an extension of the PFCmodel, Song et al. (2023) intro-
duced the kernel principal fitted component (KPFC) model,

which captures the nonlinear relationship between Xy and
Y . This approach formulates linear functions of Xy ∈ R

p

and Y ∈ R in a reproducing kernel Hilbert space (RKHS),
leveraging the kernel trick. The kernel trick enables nonlinear
data to be mapped into a higher dimensional feature space,
where the data exhibit a linear structure, making it possible
to apply linear methodologies in this transformed space. Let
HX andHY be the RKHS spaces associated with Xy and Y ,
respectively, and define the corresponding feature mappings
as �(Xy) ∈ HX and 	(y) ∈ HY . The objective function of
the KPFC model is given by

arg min
�k ,βk

∑

y

‖ �(Xy)−E�(Xy)

−
d∑

k=1

(�k ⊗ βk)	(y) ‖2H,

subject to the orthonormality constraint 〈�k, � j 〉H = δk j ,
where �k, βk ∈ H. Here, δk j = 1 when k = j and δk j = 0
otherwise. This indicates the orthogonality of components.
The operator ⊗ represents the tensor product, which is com-
puted as ( f ⊗ g)h = f 〈g, h〉H for all h ∈ H.

Here, we extend the PFC model to the functional set-
ting, where both Xy and Y are random curves, denoted as
Xy(t) and y(t) for t ∈ [a, b]. This extension generalizes the
Euclidean space Rp to an infinite dimensional Hilbert space
and replaces the standard Euclidean inner product with a
functional inner product defined as

〈 f , g〉 =
∫ b

a
f (t)g(t)dt, ∀ f , g ∈ L2[a, b].

Let HX and HY be the Hilbert spaces associated with the
functional predictors Xy and the functional response y. The
functional principal fitted component (FPFC) model extends
the PFC framework to the functional domain, and its objec-
tive function is formulated as

arg min
�k ,βk

∑

y

‖ Xy−E(Xy)

−
d∑

k=1

(�k ⊗ βk)y ‖2H,

(2)

subject to the constraint 〈�k, � j 〉H = δk j ,where�k, βk ∈ H.
This formulation ensures the orthogonality of functional
components, enabling effective dimension reduction in infi-
nite dimensional spaces.

In this paper, we further extend the FPFCmodel to accom-
modate nonlinear transformations of functional data. This
generalization is achieved by introducing a nested Hilbert
space framework, incorporating a second level Hilbert space
MX andMY to capture nonlinear structuresmore effectively.
Specifically, the functional nature of our problemnecessitates
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the construction of twoHilbert spaces. Thefirst represents the
space in which the functional predictor X resides, while the
second, assumed to be an RKHS, characterizes the underly-
ing nonlinear relationships. By leveraging this nested Hilbert
space structure, our approach enables a more flexible mod-
eling of nonlinear dependencies among random functions.
This extension provides a systematic way to generalize the
PFC model to nonlinear functional settings while preserving
dimension reduction properties. In the finite dimensional set-
ting, the PFCmodel of Cook (2007) naturally arises from the
likelihood function under a multivariate normal assumption,
as shown in (1). However, extending this likelihood based
approach directly to infinite dimensional functional spaces
is challenging because defining probability density functions
for functional data is fundamentally problematic (Dai et al.
2017; Delaigle and Hall 2010). Therefore, the likelihood
formulation used in themultivariate context does not straight-
forwardly generalize to the functional setting. To circumvent
this issue, we propose an alternative objective function in
(3), which can capture the core idea of minimizing squared
deviations froma lower dimensionalmean structurewithin an
appropriateHilbert space framework. This approach does not
require the existence of an infinite dimensional density func-
tion and thus preserves the statistical essence of the original
PFC model. Figure 1 illustrates the conceptual progression
from the standard PFCmodel to the proposed nonlinear func-
tional principal fitted component (NFPFC)model. As we can
see from Figure 1, the PFC model extends to the KPFC to
capture nonlinearity and to the FPFC to handle functional
data. The NFPFC model unifies these extensions, effectively
modeling nonlinear functions of functional data.

The remainder of the paper is structured as follows. In Sec-
tion 2, we establish the theoretical foundation of functional
SDR and introduce the NFPFCmodel at the population level.
Section 3 presents the estimation algorithm for the sample
level implementation. In Section 4, we provide the asymp-
totic theory of the proposed estimator. Section 5 evaluates the
performance of our method through simulation studies, fol-
lowed by a real world data application in Section 6. Finally,
Section 7 summarizes our work and potential directions for
future research. TheAppendix includes detailed proofs, addi-
tional simulation studies, and an illustration of the parameter
associated with the convergence rate.

2 Population-level development

2.1 Nonlinear functional sufficient dimension
reduction

Ferré and Yao (2003) and Ferré and Yao (2005) introduced
a framework for functional linear SDR, which is formulated

as follows

Y X | 〈 f1, X〉H, · · · , 〈 fd , X〉H,

where f1, · · · , fd are elements of the Hilbert space H =
L2[a, b], and 〈·, ·〉H denotes the inner product in H. The
objective of functional linear SDR is to identify the subspace
of H spanned by f1, · · · , fd , which captures the essential
information of X relevant to Y while reducing dimensional-
ity.

Let� be a probability space equipped with a σ -algebraF
and a probability measure P . Suppose TX and TY are inter-
vals in R, and letHX andHY be Hilbert spaces of functions
defined on TX and TY , respectively. We define the Borel σ -
algebras FX and FY as those generated by the open sets in
HX and HY . For any general random element S, let σ(S)

denote the σ -field generated by S. As defined in Billingsley
(2012), a ‘randomelement’ refers to anymeasurable function
mapping from a probability space � to another measurable
space (�S,FS). This broad definition includes various cases,
such as random variables in R, random vectors in R

k , ran-
dom functions in a Hilbert space, and even collections of
random functions forming a direct sum of Hilbert spaces,
which aligns with our setting. Here, a mapping X : R → HX

is called a random element in HX , and similarly, a mapping
Y : R → HY is a random element inHY . These random ele-
ments are measurable with respect to the σ -algebras F/FX

and F/FY , securing well defined probability distributions.
The distributions of X and Y are denoted by PX and PY ,
respectively.

We assume there exists a sub-σ -field G within σ(X) that
satisfies

Y X | G.

The process of identifying G is referred to as nonlinear func-
tional SDR (Lee et al. 2013; Li and Song 2017). Following
Lee et al. (2013), Li and Song (2017), we define G as a suf-
ficient σ -field within σ(X) for predicting Y . Under a mild
condition, as shown in Lee et al. (2013), Li and Song (2017),
the intersection of all such sub-σ -fields remains a sufficient
σ -field. This intersection is termed the central σ -field for
Y | X . Throughout this paper, we assume that this condition
is satisfied. This guarantees the existence of the central σ -
field. For simplicity, we redefine G to represent this central
σ -field for Y | X . Intuitively, this represents the minimal
amount of information in X that retains all predictive power
for Y . The central σ -field generalizes the concept of a central
subspace in classical SDR to settings where both X and Y
are functional.

Tan et al. (2024) propose a nonlinear dimension reduction
framework for functional data that extendsmanifold learning
to accommodate intricate data structures such as signifi-
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Fig. 1 Flowchart illustrating the
progression toward the NFPFC
model

cant phase variation. Their methodology includes theoretical
guarantees and practical strategies for handlingmeasurement
errors in functional data. By focusing on the intrinsic geome-
try of functional data assumed to lie on an unknownmanifold,
Tan et al. (2024) demonstrate how their manifold based
approach can outperform traditional methods, particularly
for clustering tasks where data exhibit nonlinear structures.

To effectively capture the nonlinear relationships between
X and Y , Li and Song (2017) introduced a second-level
Hilbert space of functions defined on HX and HY . This
framework leverages RKHS to model complex dependen-
cies beyond linear structures.

Let κ : H × H → R be a positive definite kernel, and let
MX andMY denote the corresponding RKHS induced by κ .
The kernel function is assumed to take the form as

κ( f , g) = ρ(〈 f , f 〉H, 〈 f , g〉H, 〈g, g〉H),

for any f , g ∈ H, where ρ : R3 → R
+ is a predefined func-

tion. This formulation extends the standard kernel trick by
replacing the Euclidean inner product with the inner product
in the first-level Hilbert spaceH, thereby adapting the kernel
to the functional setting.

Common choices for ρ yield well-known nested kernels,
such as

κ( f , g) = exp(〈 f , g〉H),

κ( f , g) = (〈 f , g〉H + c)m, c ≥ 0,

κ( f , g) = exp(−γ ‖ f − g‖2H), γ = 1

2σ 2 ,

where the second expression represents the polynomial
kernel with a constant shift c, and the third expression cor-
responds to the Gaussian radial basis function (RBF) kernel
with bandwidth parameter σ .

Since the inner product in the second-level RKHS M is
uniquely determined by κ , and κ itself is fully characterized
by the inner product in H, it follows that the inner product
in M is inherently dependent on the structure of H. Con-
sequently, the second-level Hilbert space M can be viewed
as a nested RKHS induced by the function ρ, providing a
systematic framework for capturing nonlinear structures in
functional data.

2.2 Nonlinear functional principal fitted component
model

In this section, we extend the FPFC model to the nonlinear
setting. To formalize this extension, let B(H1,H2) be the
space of bounded linear operators mapping from a Hilbert
space H1 to another Hilbert space H2. For any linear oper-
ator J ∈ B(H1,H2), we define J ∗ as its adjoint operator,
ker(J ) as its kernel (null space), ran(J ) as its range (image),
and ran(J ) as the closure of its range. Further, (·)† repre-
sents the Moore-Penrose inverse. These operator-theoretic
concepts provide a fundamental framework for analyzing and
formulating the nonlinear extension of the FPFC model.

Let L2(PX ) denote the space of all square-integrable
functions of X , defined as the set of functions satisfying
E[ f 2(X)] < ∞. The following assumptions are fundamen-
tal in establishing the theoretical framework of our proposed
method.
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Assumption 1 MX is a dense subset of L2(PX )modulo con-
stants if, for any f ∈ L2(PX ), there is a sequence fn ⊆ MX

such that var[ fn(X) − f (X)] → 0 as n → ∞.

Under Assumption 1, Li (2018) demonstrated that veri-
fying the independence of two functions from HX and HY

is sufficient, without requiring a Gaussian assumption, given
the covariance operator �XY . Since the RKHS induced by
the Gaussian RBF kernel is dense in L2(P), we adopt the
Gaussian RBF kernel in this paper to ensure a rich function
space for modeling dependencies.

The central class, denoted by SY |X , consists of all func-
tions in the second-level RKHSMX that aremeasurable with
respect to G. In other words, the central class captures the
set of nonlinear functions of X that fully describe the depen-
dence between X and Y , serving as a concrete function space
representation of the central σ -field.

A key result from Li and Song (2017) states that under
mild assumptions, the central class canbe characterized using
covariance operators in the RKHS framework. It is related
to the range space of a regression operator constructed from
these covariance operators. If the central class is complete,
meaning it contains all necessary nonlinear transformations
of X , then the estimated central class is exhaustive, which
guarantees that no relevant information is lost in the reduction
process.

Thus, the central class provides a functional counterpart
to the central sub-σ -field by offering a practical approach to
estimating and recovering the information-preserving sub-
space for nonlinear functional SDR. Therefore, our objective
is to estimate the central classSY |X based on a random sam-
ple of (X ,Y ).

Assumption 2 There exist constants C1 > 0 and C2 > 0
such that, for all f ∈ MX and g ∈ MY , var[ f (X)] ≤
C1‖ f ‖2MX

, var[g(Y )] ≤ C2‖g‖2MY
.

Given Assumption 2, the mapping MX → L2(PX ),
defined by f �→ f , is a bounded linear operator. Fur-
thermore, the bilinear form MX × MX → R, given by
( f , g) �→ cov( f (X), g(X)), is also bounded. Consequently,
we define the variance and covariance operators as

�XX ∈ B(MX ), �YY ∈ B(MY ),

�XY ∈ B(MY ,MX ), �Y X ∈ B(MX ,MY ),

where the inner product relation

〈 f , �XX g〉MX = cov( f (X), g(X))

holds. By definition, the operators �XX and �YY are self-
adjoint, and the adjoint property �∗

XY = �Y X holds.
Assumption 2 further ensures the existence of positive

constants C1 > 0 and C2 > 0 such that, for all f ∈ MX and

g ∈ MY , we have

E | f (X)| ≤ C1‖ f ‖MX , E |g(Y )| ≤ C2‖g‖MY .

As a result, the linear functionals f �→ E[ f (X)] : MX →
R and g �→ E[g(Y )] : MY → R are bounded. Let μX

and μY be the Riesz representations of these bounded linear
functionals.

Moreover, by Assumption 2, we obtain

ran(�XX ) = M0
X , ran(�YY ) = M0

Y .

Thus, the spaces M0
X and M0

Y can be expressed as

M0
X = span{κX (·, x) − μX : x ∈ HX },

M0
Y = span{κY (·, y) − μY : y ∈ HY },

where span denotes the closure of the linear span.

Assumption 3
(i) ran(�XY ) ⊆ ran(�XX ) and�

†
XX�XY is a bounded oper-

ator.
(ii) ran(�Y X ) ⊆ ran(�YY ) and �

†
YY�Y X is a bounded oper-

ator.

Assumption 3 imposes collective smoothness, which
secures that the operators �

†
XX�XY and �

†
YY�Y X are well

defined.
Based on these assumptions, the objective function of the

FPFCmodel in (2) can be reformulated to accommodate non-
linear structures. The objective function of theNFPFCmodel
is given by

arg min
�k ,βk

∑

y

∥∥∥∥�(Xy) − E�(Xy)

−
d∑

k=1

(�k ⊗ βk)�(y)

∥∥∥∥
2

M

,

(3)

subject to the orthogonality constraint 〈�k, � j 〉M = δk j ,
where �k, βk ∈ M, and δk j = 1 if k = j and δk j = 0 other-
wise. Here, Xy ∈ HX and y ∈ HY represent the functional
predictor and response, respectively, while � ∈ MX and
� ∈ MY are transformation operators that map functional
data into an RKHS. By solving this optimization problem,
we estimate the central class SY |X using the first d eigen-
functions of the objective operator.

Up to this point, we have used Xy to explicitly denote a
random vector drawn from the conditional distribution of the
predictor X given Y = y, emphasizing how the distribution
of X is generated from y. However, for notational simplic-
ity, we will use X ∈ HX in place of Xy . This convention
does not affect the underlying conditional structure. Unless
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explicitly stated otherwise, all subsequent statements involv-
ing X implicitly assume the conditional dependence on Y
established earlier.

Theorem 1 Under Assumption 3, the NFPFC model is for-
mulated as an eigenvalue problem, where the central class
SY |X is estimated by solving for the first d eigenfunctions of
the operator

�XY�
†
YY�Y X ,

where d is a known parameter specifying the dimensionality
of the reduced subspace.

Since �XX and �YY are Hilbert-Schmidt operators, their
inverse operators, �−1

XX and �−1
YY , are unbounded (Fukumizu

et al. 2007). To circumvent this issue, we employ the regu-
larized operators �

†
XX�XY and �

†
YY�Y X as surrogates for

�−1
XX and �−1

YY in the estimation of the central class SY |X .
Following the results of Li and Song (2017), under Assump-
tions 1, 2, and 3, the inclusion

ran(�XY�
†
YY ) ⊆ cl(�XXSY |X )

holds, where cl(·) denotes the closure. Furthermore, ifSY |X
is complete, then equality is attained as

ran(�XY�
†
YY ) = cl(�XXSY |X ).

For any invertible operatorU mappingM0
Y onto itself, we

establish the equivalence

ran(�XY�
†
YY ) = ran(�XY�

†
YYU�

†
YY�Y X ).

By setting U = �YY , it follows that

ran(�XY�
†
YY ) = ran(�XY�

†
YY�YY�

†
YY�Y X )

= ran(�XY�
†
YY�Y X ).

Consequently, we conclude that

ran(�XY�
†
YY�Y X ) = cl(�XXSY |X ).

Proposition 1 Assume Assumptions 1, 2, and 3 hold. If HX

is dense in L2(PX ) andHY is dense in L2(PY ), then we have

ran(�†
XX�XY�

†
YY�Y X�

†
XX ) = SNFPFC ⊆ SY |X .

Furthermore, if SY |X is complete, then we have

SNFPFC = SY |X .

The inclusion of �
†
XX ensures that the resulting operator

remains well-defined and bounded, thereby maintaining sta-
bility in the estimation process. Moreover, this formulation
aligns with Assumption 4 of Li and Song (2017), reinforcing
the theoretical foundation of the proposed approach.

Corollary 1 SupposeAssumptions 2and3hold. Let f1, . . . , fd
be solutions to the following generalized eigenfunction prob-
lem

maximize 〈 f , �†
XX�XY�

†
YY�Y X�

†
XX f 〉MX ,

subject to f ∈ M0
X , 〈 f , f 〉MX = 1,

〈 f , f1〉MX = · · · = 〈 f , fk−1〉MX = 0,

k ∈ {2, . . . , d}.

Then, the set of functions { f1(X), . . . , fd(X)} spans a sub-
space of SY |X . Furthermore, if SY |X is complete, these
functions fully characterize the central class.

Our approach shares with Li and Song (2017) the fun-
damental goal. In particular, both methods operate under
analogous assumptions to induce well defined covariance
operators and make use of the Moore Penrose inverses in the
regularization process. However, a fundamental difference
between our approach and that of Li and Song (2017) is that
our method is conceptually based on the principal fitted com-
ponent methodology (Cook 2007; Cook and Forzani 2008).
A key difference lies in the specific operator we employ
to capture the dependence between X and Y. While Li and
Song (2017) focus on �

†
XX�XY�Y X�

†
XX we instead intro-

duce �
†
XX�XY�

†
YY�Y X�

†
XX so that the cross covariance is

weighted by�
†
YY . Thismodification normalizes the variation

of Y in the operator, leading to a more canonical correlation
type criterion. From a stability standpoint, inserting�

†
YY can

also mitigate issues arising when Y is high dimensional or
exhibits strong collinearity. By adjusting for the covariance
structure of Y , directions with disproportionately large vari-
ances do not overshadow the rest.

In the NFPFC framework, the eigenvalues corresponding
to the leading d eigenfunctions of the operator�†

XX�XY�
†
YY

�Y X�
†
XX can be seen as quantifying the amount of response

relevant variation captured by each dimension. This concept
parallels principal component analysis, in which eigenval-
ues represent the proportion of variance explained by each
principal component. Hence, examining both the magni-
tudes and the decay pattern of these eigenvalues offers
insights for determining the effective dimension d. For fur-
ther methodological details in the context of linear SDR, see
Li (2018). Li et al. (2011) and Li and Song (2017) propose
a cross validated Bayesian Information Criterion (CVBIC),
explicitly designed to balance model complexity against
predictive performance systematically using eigenvalues.
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CVBIC penalizes the inclusion of additional dimensions
based on incremental predictive gains relative to the cor-
responding increase in model complexity, thus providing a
rigorous criterion for dimension selection.

3 Sample-level implementation

In this section, we develop a sample-level algorithm to imple-
ment the population-level formulation of the NFPFC model.

3.1 Coordinate representation

For the development of the sample-level procedure, we adopt
the coordinate notation system introduced in Lee et al. (2013)

and Li and Song (2017). Let Q = In − 1n1nT

n , where 1n
denotes an n-dimensional column vector with each compo-
nent equal to 1, and let KX be the n×n Grammatrix defined
as (KX )i j = κX (Xi , X j ). Then, we define GX = QKX Q
and GY = QKY Q.

Proposition 2 At the sample level, the covariance operators
can be expressed in matrix form as follows:

[�̂XX ] = n−1GX , [�̂YY ] = n−1GY ,

[�̂Y X ] = n−1GX , [�̂XY ] = n−1GY ,

[�̂†
XX ] = nG†

X , [�̂†
YY ] = nG†

Y .

3.2 Implementation of the NFPFC

Using Proposition 2, we can express the quantities in Corol-
lary 1 in matrix form. The operator can be written as

nG†
X (n−1GY )nG†

Y (n−1GX )nG†
X

= G†
XGY (n−1GY )†GXG

†
X

Hence, the inner product becomes

〈 f , �̂†
XX �̂XY �̂

†
YY �̂Y X �̂

†
XX f 〉MX

= 〈 f ,G†
XGY (n−1GY )†GXG

†
X f 〉MX

= [ f ]TGXG
†
XGY (n−1GY )†GXG

†
X [ f ],

where the second equality follows from [ f ] = Q[ f ] and
G†

X = QG†
X . To mitigate overfitting, we replace the Moore-

Penrose inverses G†
X and G†

Y with the Tychonoff regularized
inverses (GX + θX In)−1 and (GY + θY In)−1, where θX > 0
and θY > 0 are tuning constants. This results in

[ f ]TGX (GX + θX In)
−1GY

(GY + θY In)
−1GX (GX + θX In)

−1[ f ]. (4)

To maximize equation (4) over M0
X , the inner products in

Corollary 1 can be expressed as 〈 f , f 〉MX = [ f ]TGX [ f ]
and 〈 f , fl〉MX = [ f ]TGX [ fl ]. By defining v = G1/2

X [ f ]
and applying Tychonoff regularization, we obtain

[ f ] = (GX + θX In)
−1/2v.

Reformulating the problem in terms of v, Corollary 1 leads
to the following eigenvalue problem

maximize vT(GX + θX In)
−3/2GXGY

(GY + θY In)
−1GX (GX + θX In)

−3/2v,

subject to vTv = 1, vTv1 = 0, . . . , vTvk−1 = 0,

k ∈ {2, . . . , d}.
Thus, the vectors v1, . . . , vd correspond to the first d

eigenvectors of the matrix

(GX + θX In)
−3/2GXGY

(GY + θY In)
−1GX (GX + θX In)

−3/2.
(5)

From this, the coefficients [ fl ]BX can be recovered as

[ fl ]BX = (GX + θX In)
−1/2vl ,

where BX = {κ(·, Xi ) − En κ(·, X) : i = 1, . . . , n}
= {b(X)

1 , . . . , b(X)
n }.

The final set of functions is given by

f̂l = vl
T(GX + θX In)

−1/2Qb(X), l = 1, . . . , d,

which represent the nonlinear sufficient predictors that span
the approximate central class.

3.3 Tuning parameters

We adopt the Gaussian RBF as the kernel, defined as

κ(s1, s2) = exp(−γ ‖s1 − s2‖2),

where ‖·‖ denotes the norm.Given observations SX
1 , . . . , SX

n
of X and SY1 , . . . , SYn of Y , the tuning parameters γX and γY
are selected according to

γ j =
(n
2

)2
∑

a<b ‖S j
a − S j

b‖2
, j ∈ {X ,Y }.

The optimal values of the tuning parameters θX and θY are
selected using generalized cross-validation (GCV), follow-
ing the approach in Li (2018) with Tychonoff regularization.
Letλmax(A) denote the largest eigenvalue of amatrix A, ‖·‖F
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represent the Frobenius norm, and tr(·) denote the trace of a
matrix.

The GCV criteria are defined as

GCVX (θX )

= ‖GY − GX (GX + θXλmax(GX )In)−1GY ‖2F(
tr[In − GX (GX + θXλmax(GX )In)−1])2

,

GCVY (θY )

= ‖GX − GY (GY + θYλmax(GY )In)−1GX‖2F(
tr[In − GY (GY + θYλmax(GY )In)−1])2

.

Byminimizing GCVX (θX ) and GCVY (θY ), we obtain the
optimal tuning parameters that achieve a balance between
preserving fidelity to the data and confirming smoothness in
the estimator.

3.4 Dimension selection

A critical step in SDR methods is determining the structural
dimension d, the minimal number of nonlinear components
f1, . . . , fd ∈ MX . Our approach to selecting d follows the
methodology established in Li et al. (2011) and Li and Song
(2017). For classification problems with a relatively small
categorical responses Y ∈ {1, . . . , k}where k = 8, it is com-
mon practice to set d = k−1. However, to address situations
involving continuous responses or categorical responseswith
a large number of classes, we employ an approach inspired
by the Bayesian Information Criterion that has been adapted
to the nonlinear functional setting. Following the framework
in Li and Song (2017), we define a selection criterion as

Gn(k) =
k∑

i=1

λ̂i − λ̂1 n
− 1

4 log(n) · k, (6)

where λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n denote the eigenvalues of
the estimated operator �̂

†
XX �̂XY �̂

†
YY �̂Y X �̂

†
XX in descend-

ing order. The first term of equation (6),
∑k

i=1 λ̂i , quantifies
the total explained variation by the first k nonlinear eigen-
functions. The second term serves as a penalty for model
complexity, scaling with sample size n, the leading eigen-
value λ̂1, and structural dimension candidate k. The penalty
thus grows proportionally with k. The estimated optimal
structural dimension d̂ is then determined by maximizing
the criterion as

d̂ = argmax
1≤k≤n

Gn(k).

Theoretical results in Li and Song (2017) demonstrate that
this criterion consistently recovers the true structural dimen-
sion as n → ∞, given appropriate regularity conditions and

spectral decay assumptions. In practical implementation, we
employ a systematic grid search procedure across a suitable
range, k = 1, . . . , 10 or until eigenvalues become negligible,
and select the dimension that maximizes Gn(k).

4 Asymptotic theory

In this section, we establish the asymptotic properties of the
sample-level estimator

T̂ = �̂
†
XX �̂XY �̂

†
YY �̂Y X �̂

†
XX .

Here, �
†
XX and �

†
YY are the Tikhonov-regularized inverses

of the covariance operators �XX and �YY , respectively,
while �̂·· are their empirical estimates. Under appropriate
smoothness conditions and a suitable choice of the regular-
ization parameters, we derive the convergence rate of T̂ to
T and establish its dependence on the spectral decay of the
population-level covariance operators.

Theorem 2 Let
{
(Xi ,Yi )

}n
i=1 be an i.i.d. sample of func-

tional data taking values in suitably defined RKHS HX and
HY . Suppose the following conditions hold.

(i) There exists an exponent α > 1 and a constant Cα > 0
such that, for all j ≥ 1,

λ j (�XX ) ≤ Cα j−α,

λ j (�YY ) ≤ Cα j−α,

where {λ j (�XX )} and {λ j (�YY )} are the eigenvalues of
the covariance operators �XX and �YY , respectively.

(ii) The regularization parameters θX and θY satisfy

θX ∼ n− 2α
2α+1 and θY ∼ n− 2α

2α+1 ,

balancing the bias–variance trade-off in the Tikhonov-
regularized inverses �

†
XX and �

†
YY where ∼ indicates

asymptotically proportional.
(iii) Each of the empirical covariance operators �̂XY , �̂Y X ,

�̂XX , �̂YY consistently estimates its population coun-
terpart in operator norm at order Op(n−1/2) (Sripe-
rumbudur et al. 2010; Fukumizu et al. 2007).

Then, there exists a constant C > 0 (independent of n) such
that, with high probability,

∥∥T̂ − T
∥∥B ≤ C n− α

2α+1 ,

as n → ∞. Equivalently,

∥∥T̂ − T
∥∥B = Op

(
n− α

2α+1

)
.
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Proof Theproof follows standard operator perturbation argu-
ments and is omitted.

The condition θX , θY → 0 as n → ∞ in Theorem 2 is
an asymptotic requirement ensuring that the regularization
bias vanishes in the limit of infinite data. This assumption is
a sufficient condition for convergence, not a statement that
overfitting becomes irrelevant for large but finite n. Similar
asymptotic behavior occurs in kernel smoothing, splinemod-
els, and other nonparametric settings, where bandwidths or
smoothing parameters typically diminish with growing sam-
ple size (Wahba 1990). In practice, one still needs to select
θX and θY adaptively via GCV at each fixed n to balance bias
and variance. Therefore, θn does not literally approach zero
at finite n, but rather tends to zero gradually as n → ∞.

In contrast to the usual finite dimensional setting where
convergence rates depend explicitly on the dimension, our
infinite-dimensional framework replaces ‘dimension’ with
the decay rate of the eigenvalues of the covariance operators.
The exponent α in condition (i) characterizes this decay. A
larger α indicates faster eigenvalue decay, leading to a faster
convergence rate. Conversely, smaller values of α arise when
the data exhibit more complex or less smooth structure. In
practice, α is not directly observable, and its value can be
estimated or approximated by examining how quickly the
empirical eigenvalues decay. ��

5 Simulation studies

In this section, we assess the performance of our proposed
method under different scenarios for dimension reduction of
functional data. We consider two scenarios: (i) the response
is a random variable and the predictor is a random function;
(ii) both the response and predictor are random functions.We
use the weak inverse regression estimator (WIRE) in Li and
Song (2022) as one of the comparison methods.

WIRE generalizes classical sliced inverse regression (Li
1991; Cook and Weisberg 1991) to functional data as Ferré
and Yao (2003). However, unlike the existing methods,
WIRE avoids direct estimation of E(X | Y ). Instead, it relies
on weak conditional expectation, which defined as the induc-
ing function of a Carleman operator in Weidmann (1980). Li
and Song (2022) defineHX andHY as the RKHS spanned by
{κT (·, τi ) : i = 1, · · · ,m}, where κT : J× J → R be a posi-
tive definite kernel and time points Ji = {ti1, · · · , timi } ⊆ J .
They refer to the pair of kernels (κT , κY ) as nested ker-
nels, and KT as m × m matrix {κT (s, t) : s, t ∈ J }. The
main difference between WIRE method and our approach
lies in the coordinate matrix, since goal in WIRE is to find
ran(�†1/2

XX �XY M
−1
YY�Y X�

†1/2
XX ), where MYY = n−1KY and

KY is the Gram matrix {κY (Yi ,Y j ) : i, j = 1, · · · , n}. The

eigenvalue problem is

maximize 〈 f , �†1/2
XX �XY M

−1
YY�Y X�

†1/2
XX f 〉HX

subject to 〈 f , f 〉HX = 1,

〈 f , f1〉HX = · · · = 〈 f , fk−1〉HX = 0,

k ∈ 2, · · · , d.

This can be reformulated as to find the first d eigenvectors
of AX K

1/2
T BXY K

1/2
T AX . Here, AX = (n−1K 1/2

T [X1:n]Qn

[X1:n]TK 1/2
T +θX Im)−1/2, and BXY = [X1:n]Qn(n−1KY )(n−1

KY + θY In)−1Qn[X1:n]T. In this structure, WIRE is adept at
capturing linear relationship between predictor and response.
For more details, see Li and Song (2022).

To evaluate the performance in each model, we com-
pare the estimated and true predictors using a multivariate
version of Spearman’s correlation called the Multiple Corre-
lation of Multivariate rank (MCMR). Let U1, · · · ,Un ∈ R

r

and V1, · · · , Vn ∈ R
s be two samples of random vectors

representing the estimated and true predictors, respectively.
The multivariate ranks are defined as Ũi = n−1 ∑n

l=1(Ul −
Ui )/‖Ul − Ui‖ and Ṽi = n−1 ∑n

l=1(Vl − Vi )/‖Vl − Vi‖.
The MCMR is then defined as

mcm rn(U , V ) =
(
tr

{
[varn(Ṽ )]−1/2covn(Ṽ , Ũ )

[varn(Ũ )]−1covn(Ũ , Ṽ )[varn(Ṽ )]−1/2
})1/2

.

Here, a higher MCMR value signifies better performance.
In each simulation setting, we generate a total of n inde-

pendent datasets. For massive datasets, subsampling based
GCV approach in which a smaller subset can be used to
evaluate the cross validation criterion, rather than using all
n observations. A moderately sized subsample can provide a
reliable estimate of the regularization parameter at a fraction
of the cost. In practice, one may draw multiple subsamples,
compute the GCV selected tuning parameter on each, and
then use a median of those estimates as the final choice. Fur-
thermore, although one could compute cross validated tuning
parameters individually for each dataset, we find empiri-
cally that these tuning parameters exhibit minimal variability
across replicates. Therefore, to reduce computational costs,
we conduct the GCV procedure only on the first ten simula-
tion replicates. For each of these ten replicates, we determine
the optimal tuning parameters by minimizing the GCV crite-
rion over prespecified grids. We define a grid of 20 candidate
values for θX and θY , where the first point is n−1/4, and the
remaining 19 points form a log-spaced sequence from n−1/4

50
to 50 n−1/4.We then average these ten optimal values to yield
a single tuning parameter used for the remaining datasets.
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Table 1 Comparison of average
MCMR values and their
standard errors for various
methods across Models I-1 to
I-3.

Model FSIR WIRE NFPFC FGSIR FPTU

Model I-1 0.153 (0.006) 0.271 (0.011) 0.943 (0.002) 0.953 (0.001) 0.745 (0.015)

Model I-2 0.162 (0.007) 0.331 (0.013) 0.792 (0.007) 0.706 (0.003) 0.341 (0.016)

Model I-3 0.157 (0.006) 0.309 (0.014) 0.727 (0.009) 0.734 (0.004) 0.447 (0.009)

Fig. 2 Observed curves of Xi (t)
and the first two sufficient
predictors or FPTU components
from various methods for Model
I-1. (Black: Class 0, Red: Class
1.)

5.1 Scenario I: scalar-on-function (Inverse
Regression)

We initially present our methodology under the broad rubric
of function to function regression. Our framework naturally
encompasses scalar or vector responses as well, since any
finite dimensional Euclidean spaceRm can be endowed with
a standard inner product and thus regarded as a Hilbert
space. Let HY denote the usual Hilbert space structure
on R

m , where the inner product is given by 〈u, v〉HY =∑m
j=1 u j v j , u, v ∈ R

m . As a result, if m = 1, Y ∈ R,
then Y is simply an element of a one dimensional Hilbert
space. Thus, the special case of having a scalar or vector
response Y ∈ R

m is fully covered by the general Hilbert
space framework. We consider three models (Model I-1,
Model I-2, andModel I-3) with regularly observed univariate
functional data. Each model explores different relationships

between the binary response variable Y (where Y = 0 or
Y = 1) and the functional predictor X(t)with inverse regres-
sion. We set the sample size n = 100, and each curve X(t) is
observed at 10 equally spaced time points in [0, 1]. We use
Gaussian RBF kernel to construct the Gram matrix.

Model I-1 captures a highlynonlinear relationshipbetween
Y and X(t).Wegenerate a randomsampleYi ∼ Bernoulli(0.5)
for i = 1, · · · , n, and generate Xi (t) based on

Model I-1 :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi (t) | Yi = 0 ∼ Z1i cos(θ1i ) cos(π t)
+Z1i sin(θ1i ) sin(t) + εi (t),

Xi (t) | Yi = 1 ∼ Z2i cos(θ2i ) cos(π t)
+Z2i sin(θ2i ) sin(t) + εi (t),
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Fig. 3 Observed curves of Xi (t)
and the first two sufficient
predictors or FPTU components
from various methods for Model
I-2. (Black: Class 0, Red: Class
1.)

where Z1i ∼ N (1, 0.22), θ1i ∼ U (0, 2π), Z2i ∼
N (4, 0.52), θ2i ∼ U (0, 2π), and εi (t j ) ∼ N (0, 0.12). All
random variables Z1i , θ1i , Z2i , θ2i , and εi (t) are indepen-
dently sampled.

Next, we consider two models representing linear rela-
tionships, by using B-spline basis functions and monomial
basis functions to construct dimension reduction directions.
Our goal is to evaluate the performance of the NFPFC under
linear conditions. Similar to Model I-1, we generate a ran-
dom sample Yi ∼ Bernoulli(0.5) for i = 1, · · · , n, and
generate Xi (t) from following models as

Model I-2 :
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Xi (t) | Yi = 0 ∼ Z1i (s1(t) + s2(t))
+ Z2i s2(t) + εi (t),

Xi (t) | Yi = 1 ∼ (Z1i + Z2i )

(s5(t) + s6(t)) + εi (t),

Model I-3 :
⎧
⎪⎨

⎪⎩

Xi (t) | Yi = 0 ∼ (Z1i + Z2i )m2(t) + εi (t),

Xi (t) | Yi = 1 ∼ (Z1i + Z2i )

(m5(t) + m6(t)) + εi (t),

where s1(t), · · · , s6(t) are the 6 B-spline basis functions
defined on [0, 1], and m1(t), · · · ,m6(t) are the 6 mono-
mial basis functions with m j (t) = t j−1, j = 1, · · · , 6
defined on [0, 1]. Z1i ∼ N (0, 22), Z2i ∼ N (0, 22), and
εi (t) ∼ N (0, 0.12) are independently sampled.

We first estimate two predictors using WIRE, NFPFC,
functional sliced inverse regression (FSIR; Ferré and Yao
2003), functional generalized sliced inverse regression
(FGSIR; Li and Song 2017), and functional parallel trans-
port unfolding (FPTU; Tan et al. 2024). We then calculate
the MCMR between the estimated and true predictors from
the test set. This process is repeated 100 times, and we report
the average MCMR values and their standard errors in Table
1. For Model I-1, NFPFC attains high MCMR value com-
pared to WIRE and FPTU, which indicates that it performs
better than the other competitors in this setting. InModel I-2,
NFPFC achieves the highest MCMR, outperforming FGSIR
as well as WIRE and FPTU. A similar trend is observed
in Model I-3, where NFPFC and FGSIR again stand out,
registering higher MCMR values than WIRE and FPTU.
Therefore, we can observe that NFPFC exhibits strong per-
formance in these scenarios. Table 1 further provides that
FSIR (Ferré and Yao 2003), which is a linear functional
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Fig. 4 Observed curves of Xi (t)
and the first two sufficient
predictors or FPTU components
from various methods for Model
I-3. (Black: Class 0, Red: Class
1.)

SDRmethod, demonstrates consistently limited performance
in all three models, with low average MCMR values rang-
ing approximately between 0.15 and 0.16. This indicates
that FSIR fails to effectively capture nonlinear relationships
inherent in these simulation scenarios.

Figure 2-4 show the observed curves and the dimension
reduction results for eachmodel usingWIRE,NFPFC, FSIR,
FGSIR, and FPTU. In Figure 2, the observed curves display
a highly nonlinear structure with noticeable overlap between
two classes. WIRE, FSIR, and FPTU struggle to separate
the classes due to this nonlinearity, while NFPFC effectively
differentiates them by capturing the complex structure. In
Figure 3, WIRE, FSIR, and FPTU partially separates two
classes along a diagonal, while NFPFC presents successful
classification results with nonlinearities. In Figure 4, WIRE
captures themain linear pattern but leaves significant overlap,
whereas NFPFC achieves clearer class separation.

5.2 Scenario II: function-on-function (Forward
Regression)

In scenario II, we consider three models (Model II-1,
Model II-2, andModel II-3) to explore different relationships
between the functional response Yi (t) and the functional pre-

Table 2 Comparisonof averageMCMRvalues and their standard errors
for various methods across Models II-1 to II-3.

Model WIRE NFPFC FGSIR

Model II-1 0.924 (0.003) 0.886 (0.007) 0.991 (0.000)

Model II-2 0.175 (0.009) 0.898 (0.004) 0.902 (0.003)

Model II-3 0.660 (0.011) 0.956 (0.002) 0.939 (0.002)

dictor Xi (t) with forward regression. In all models, we use
the Brownian motion to generate Xi (t) as

Xi (t) =
100∑

j=1

√
2ai j

sin(( j − 1/2)π t)

( j − 1/2)π
,

where ai j are independently sampled from N (0, 1) for i =
1, · · · , n and j = 1, · · · , 100. We set the sample size
n = 200, and each curve Xi (t) and Yi (t) are observed at
20 equally spaced time points in [0, 1]. For the construction
of Gram matrix, we also use Gaussian RBF kernel. We con-
sider following models

Model II-1 :
Yi (t) = {〈Xi , b1〉 + 〈Xi , b2〉}ρ(t) + σεi (t),
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Model II-2 :
Yi (t) =

{ 〈Xi , b1〉〈Xi , b2〉
1 + exp(〈Xi , b3〉)

}
ρ(t) + σεi (t),

Model II-3 :
Yi (t) = cos{〈Xi , b1〉 + 〈Xi , b2〉}

sin{〈Xi , b1〉 + 〈Xi , b2〉}ρ(t) + σεi (t),

where 〈Xi , b j 〉 = ∫ 1
0 Xi (t)b j (t)dt , b j (t) are taken to the

eigenfunctions v j (t) = √
2 sin(( j − 1/2)π t), ρ(t) =∑5

j=1 v j (t), σ = 0.1, and εi (t) is generated from the stan-
dard Brownian motion. In Model II-1, we assume a linear
relationship between Xi (t) and Yi (t). Model II-2 and Model
II-3 introduce nonlinearity through a variation of logistic
function and trigonometric product, respectively. Again, we
apply WIRE, NFPFC, and FGSIR to estimate sufficient pre-
dictors, and the MCMR results are in Table 2.

Table 2 compares the performance ofWIRE, NFPFC, and
FGSIR based on average MCMR values across three scenar-
ios (Models II-1 to II-3). Since NFPFC is a nonlinear SDR
method, it is natural that in linear structures, such as Model
II-1, it does not perform as well as WIRE. However, in Mod-
els II-2 and II-3, NFPFC significantly outperforms WIRE
due to its ability to capture nonlinearity in complex mod-
els. Overall, FGSIR and NFPFC demonstrate competitive
performance, while WIRE exhibits variability and generally
weaker performance in nonlinear settings.

We conducted a sensitivity analysis using Model II-2 to
investigate howvariations in theGaussianRBFkernel param-
eters (γX , γY ) and the Tychonoff regularization parameters
(θX , θY ) affect the performance of our method. Table 3 sum-
marizes the MCMR results across a selected grid of these
parameters. The results indicate limited fluctuations in per-
formance across various parameter combinations. The best
results from this sensitivity analysis closely align with those
obtained using GCV, suggesting that GCV provides a prac-
tical approach for selecting optimal tuning parameters in
practice.

5.3 Scenario III: Additional models

We consider the setup inspired by Liang et al. (2022)
and Wang et al. (2015). We generate functional predictors
{Xi (t)}ni=1 as realizations of independent standard Brownian
motions observed on a uniform grid of 100 points in the inter-
val [0, 1]. We then construct two variations of the response:

Model III-1 : Yi = ∣∣〈Xi , β1〉
∣∣ + 〈Xi , β2〉 + εi ,

Model III-2 : Yi = ∣∣〈Xi , β1〉
∣∣ + ∣∣〈Xi , β2〉

∣∣ + εi ,

where εi ∼ N (0, 0.12). The coefficient functions are defined
as β1(t) = (2t − 1)3 + 1 and β2(t) = cos

[
π(2t − 1)

] +

Table 4 Comparisonof averageMCMRvalues and their standard errors
for WIRE and NFPFC in Models III-1 and III-2.

Model WIRE NFPFC

Model III-1 0.832 (0.004) 0.712 (0.006)

Model III-2 0.179 (0.007) 0.722 (0.005)

1. By taking absolute values of inner products, we emulate
nonlinear features while maintaining a fundamentally linear
dimension reduction structure.

As we can observe from Table 4, under Model III-1, the
MCMR measure for WIRE is higher than that of NFPFC,
indicating that WIRE outperforms NFPFC in linear set-
ting. By contrast, for Model III-2, WIRE’s MCMR becomes
substantially lower, demonstrating that NFPFC outperforms
WIRE in this structure.

6 Real data applications

We explore the phoneme classification dataset, available in
the fda.usc R package. The dataset, introduced by Hastie
et al. (1995), consists of 1, 000 log-periodograms of length
256,with five phoneme classes such as “sh", “iy", “dcl", “aa",
and “ao". The phonemes are transcribed as follows: “sh" as
in “she", “iy" as the vowel in “she", “dcl" as in “dark", “aa"
as the vowel in “dark", and “ao" as the first vowel in “water".
For speech recognition, a log-periodogram is computed from
each speech frame and Figure 5 represent a sample of 10 log-
periodograms per phoneme class.

Next, we utilize WIRE and NFPFC to reduce the dimen-
sionality of these functional data representations, followed
by classification based on the reduced predictors. Figure 6
displays the first two sufficient predictors from WIRE and
NFPFC, evaluated for the phoneme training data. The left
plot in Figure 6 shows theWIRE results, where the phoneme
classes exhibit some clustering but overlap significantly,
especially between “sh" and “dcl" as well as “iy" and “aa".
This overlap indicates that WIRE struggles to capture the
nuanced differences between these phonemes, as it primarily
relies on linear structures. In contrast, the right plot in Fig-
ure 6 illustrates the NFPFC results, where the five phoneme
classes aremore distinctly separated. NFPFC’s ability to cap-
ture nonlinear patterns in the data leads to better clustering
of each class.

To quantitatively evaluate the classification performance,
we conducted experiments with different numbers of pre-
dictors obtained from WIRE and NFPFC. These reduced
predictors served as inputs to three classification methods:
linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and support vector machines (SVM). Table
5 summarizes the classification accuracies with 2, 4, and
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Fig. 5 Sample of 10 log-periodograms for each phoneme class

Fig. 6 The first two sufficient
predictors from WIRE and
NFPFC evaluated on the
phoneme training data

Table 5 Percentages of correct
classifications for the phoneme
dataset using different numbers
of predictors.

d Sample Size Method WIRE NFPFC
LDA QDA SVM LDA QDA SVM

2 250 Accuracy(%) 53.6 52.4 50.4 90.4 91.6 90.8

4 93.6 89.2 92.0 93.6 94.4 95.2

5 94.4 91.2 91.2 94.4 94.4 95.2

Table 6 Percentages of correct classifications for the phoneme dataset
with FPCA.

# of Principal Method FPCA
Components LDA QDA SVM

2 Accuracy(%) 84.8 82.4 82.4

4 92.8 90.0 91.2

5 predictors. The choice of 2 predictors follows from the
dimension selectionmethod described in Section 3.4, assum-
ing a relatively large number (five categories) for the response
variable. In addition,we considered 4 predictors, correspond-
ing to scenarioswith fewer categories, as discussed in Section
3.4. We also explored the performance with 5 predictors to
further assess classification capabilities.
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From Table 5, we observe that when using 2 predictors,
NFPFC significantly outperformsWIREacross all three clas-
sifiers. It also provides better class separation, as shown in
Figure 6. Similarly, when using 4 predictors, NFPFC contin-
ues to demonstrate superior performance compared toWIRE,
particularly noticeable with QDA and SVM classifiers. Fur-
thermore, increasing the number of predictors to 5 maintains
classification accuracy for both methods, with NFPFC con-
sistently outperforming or matching WIRE.

Table 6 compares classification accuracies after dimen-
sion reduction using an unsupervised functional principal
component analysis (FPCA; Ramsay and Silverman 2005)
approach. NFPFC produces consistently higher accuracy
rates in Table 5, outperforming FPCA based results. These
demonstrate the advantage of supervised dimension reduc-
tion by NFPFC, which appears more effective than the
unsupervised FPCA in capturing discriminative features for
classification.

7 Discussion

In this paper, we introduce a novel approach to SDR for
functional data by extending the PFC model. We adapt the
FPFC model and generalize it to the NFPFC model within
the framework of RKHS.

Our work simultaneously addresses the challenges posed
by the infinite dimensional nature of functional data and the
complexities introduced by nonlinear relationships between
functional predictors and responses. By leveraging the nested
Hilbert space theory and the properties of RKHS, we estab-
lish a population-level formulation of the NFPFC model
and provide a practical sample-level implementation using
coordinate representations and regularization methods. Fur-
thermore, we develop an asymptotic theory that characterizes
the convergence properties of the proposed estimator. Our
theoretical results establish the rate of convergence under
mild regularity conditions.

Simulation studies demonstrated the effectiveness of
our proposed method. In scenarios where the relationship
between the functional predictor and response is nonlin-
ear, the NFPFC consistently outperforms other methods.
Additionally, we apply our method to the phoneme classifi-
cation dataset, where NFPFC exhibits superior performance
in distinguishing different phoneme classes by effectively
capturing nonlinear patterns in log-periodograms.

We provide a framework for SDR, particularly in cases
involving nonlinear relationships. The ability to handle both
functional predictors and responses broadens the applica-
bility of dimension reduction across various disciplines,
including bioinformatics, climatology, and speech recogni-
tion.

Future research could explore several extensions of our
work.Onepotential direction is to apply these nonlinear func-
tional settings to the extended PFC model proposed in Cook
(2007) or the unstructured PFC model in Cook and Forzani
(2008). Furthermore, extending the framework to accommo-
date functional data with more complex structures, such as
sparsely observed or irregularly sampled functions, would
further enhance the utility of the proposed methods. Linear
FPFC will also be explored in future research to extend and
complement our current methodological framework.

Appendix

The proof of Theorem 1

Proof The objective in equation (3) can be written as

R(�, β) = En

∥∥∥�′(X) −
d∑

k=1

(�k ⊗ βk)�(y)
∥∥∥
2

M
,

where En denotes the empirical expectation. Expanding the
squared norm,

R(�, β) = En

[
‖�′(X)‖2MX

− 2
d∑

k=1

〈�k,�
′(X)〉MX 〈βk,�(y)〉MY

+
d∑

k=1

〈βk,�(y)〉2MY

]
.

(7)

Because 〈�k, � j 〉MX = δk j (the Kronecker delta), cross-
terms cancel out. Note that (7) is quadratic in each βk with
� fixed. Let Dβ R : M → R denote the Fréchet derivative of
R with respect to β. For any h = (h1, . . . , hk)T with each
hi ∈ H, we obtain

Dβ R(h, �, β) =
d∑

k=1

En

[
− 2 〈�k,�

′(X)〉 〈hk,�(y)〉

+ 2 〈βk,�(y)〉 〈hk,�(y)〉
]

= 0.

Solving for βk gives

β̂k = En
[
�(y) ⊗ �(y)

]−1
En

[
�(y) ⊗ �′(X)

]
�k .

Here,weuse theproperty of En(A) inMwith 〈 f , En(A)g〉M =
En

(〈 f , A g〉M
)
and 〈 f ′, f 〉M〈g′, g〉M = 〈(g⊗ f ) f ′, g′〉M.

See Li (2018) for details. Substituting β̂k back into the objec-
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tive, one obtains

R(�, β) = En‖�′(X)‖2MX

− 2 En

d∑

k=1

〈�k, �′(X)〉MX 〈En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k,�(y)〉M

+ En

d∑

k=1

〈
En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k, �(y)
〉2
M

.

(8)

The second term can be written as

−2
d∑

k=1

〈�k, En[�′(X) ⊗ �(y)] En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k〉M,

and the third term as

d∑

k=1

〈
En[�(y) ⊗ �(y)]−1 En[�(y) ⊗ �′(X)] �k,

En[�(y) ⊗ �(y)] En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k

〉

M
.

Recognizing that En[�(y) ⊗ �(y)]−1En[�(y) ⊗ �′(X)]
acts as an adjoint operator, we use the identity 〈A�k, B〉 =
〈�k, A∗B〉 to rewrite the third term equivalently as

d∑

k=1

〈�k, En[�′(X) ⊗ �(y)] En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k〉M.

Hence, (8) simplifies to

R(�, β) = En‖�′(X)‖2MX

−
d∑

k=1

〈�k, En[�′(X) ⊗ �(y)] En[�(y) ⊗ �(y)]−1

En[�(y) ⊗ �′(X)] �k〉M.

Therefore, the minimization problem in (3) reduces to iden-
tifying the first d eigenfunctions f1, . . . , fd of the operator
�̂XY �̂

†
YY �̂Y X , where d is specified in advance. ��

Additional simulation results

Table 7 compares the performance of WIRE, NFPFC, and
FGSIR based on average distance correlation (DCOR) val-

Table 7 Comparison of average DCOR values and their standard errors
for WIRE, NFPFC, and FGSIR across Models I-1 to I-3.

Model WIRE NFPFC FGSIR

Model I-1 0.325 (0.004) 0.813 (0.003) 0.686 (0.003)

Model I-2 0.277 (0.005) 0.538 (0.005) 0.462 (0.004)

Model I-3 0.226 (0.007) 0.186 (0.007) 0.246 (0.005)

Table 8 Comparison of average DCOR values and their standard errors
for WIRE, NFPFC, and FGSIR across Models II-1 to II-3.

Model WIRE NFPFC FGSIR

Model II-1 0.442 (0.006) 0.866 (0.002) 0.919 (0.002)

Model II-2 0.019 (0.014) 0.347 (0.006) 0.317 (0.006)

Model II-3 0.358 (0.006) 0.827 (0.004) 0.853 (0.004)

ues across Models I-1 to I-3. Distance correlation (Székely
et al. 2007) measures both linear and nonlinear depen-
dence, capturing a broader range of associations compared
to classical correlation methods. DCOR values near 1 imply
strong dependence, while values close to 0 indicate indepen-
dence. In Models I-1 and I-2, NFPFC outperforms WIRE
and FGSIR, demonstrating its competitiveness in detect-
ing nonlinear associations. All methods show relatively
low DCOR values in Model I-3, indicating weaker overall
dependence, with WIRE and FGSIR slightly outperforming
NFPFC. These results demonstrate that NFPFC generally
offers stronger performance in capturing complex relation-
ships. Table 8 reports the average DCOR results for WIRE,
NFPFC, and FGSIR in Models II-1, II-2, and II-3. In all
three models, NFPFC shows higher results compared to
WIRE. The gap is largest in Model II-1 and Model II-3,
while in Model II-2, WIRE’s score is low relative to NFPFC.
Although FGSIR shows slightly higher DCOR in Models
II-1 and II-3, the difference is often small, illustrating that
NFPFC remains highly competitive.

Illustration of the convergence rate and the role of˛

The convergence rate presented in Theorem 2 depends on
the spectral decay exponent α, which acts as a measure
of smoothness or complexity in infinite dimensional func-
tional data. To illustrate empirically how α influences the
convergence behavior, we conducted a simulation study
using Model II-1. In particular, we generated the functional
predictor and response data from a truncated Karhunen–
Loève expansion with eigenvalues decaying as j−α , where j
indexes the eigenvalues, and α takes values in {1.2, 2, 3, 4}.
To assess the performance of our estimator across different
values of α, we computed the estimation error as 1−MCMR.
We repeated this procedure for increasing sample sizes n and
plotted the resulting errors. As we can observe from Figure
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Fig. 7 Plots illustrating estimation error versus sample size for different
values of the eigenvalue decay exponent α.

7, larger values of α led to a more rapid decrease in esti-
mation error as the sample size increased, reflecting fewer
effectively influential directions within smoother functional
data. Conversely, smaller values of α corresponded to slower
convergence rates.
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